Appendix for “A Semiparametric Bayesian
Approach to Dropout in Longitudinal
Studies with Auxiliary Covariates”

Tianjian Zhou*, Michael J. Daniels" and Peter Miiller?

A.1 The Schizophrenia Clinical Trial Dataset Details

Figure shows individual trajectories and mean responses over time for the three treat-

ment arms.
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Figure A.1: Trajectories of individual responses (dashed black lines) and mean responses

(thick red lines) over time for the active control, placebo and test drug arms.

Table shows detailed dropout rates for each dropout pattern.
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S; =2 S; =3 S; =4 S; =5 Overall
Test | 4.9 (3.7) | 12.3 (9.9) | 8.6 (8.6) | 7.4 (7.4) | 33.3 (29.6)
Active |2.2(2.2) | 4.4 (2.2) | 8.9 (6.7) | 4.4 (4.4) | 20.0 (15.6)

Placebo | 3.8 (3.8) | 5.1 (5.1) | 11.5 (11.5) | 5.1 (5.1) | 25.6 (25.6)

Table A.1: Dropout rates (%) for different dropout patterns in the three treatment arms,

with informative dropout rates in parentheses.
A.2 Prior Details

The standardized values for v, y;_1, j and s are calculated by

Y = Via = mean(v.,) y _ Yig1— mean(y. ;_1)

- sd(vg) 7 TR sd(y.j-1) ’
Ji — min(j.) s —min(s.)

= max(j.) — min(j.)’ " max(s.) — min(s.)’

We then consider the parameters in the covariance functions . We put inverse Gamma

priors on k2 and k2,
W~ TGO X, w2~ TGO, X

For simplicity, we fix the length scales v,0, V50, Yy, 70, V; and 7. For example, in practice,
we set 7%, = @ to introduce moderate correlation between the initial responses of two
subjects with similar V'’s; we set 7, = 7, = @ + 1 to introduce moderate correlation
between the subsequent responses of two subjects with similar Y;_;’s and V'’s and to let
the effect of the lag-1 response to be roughly equal to an auxiliary covariate; we set v; = 5
to introduce strong correlation between the subsequent responses of one subject measured
at two different time points; we set 759 = 75 = 5 to introduce strong correlation between the
responses of two subjects with the same Y;_;’s and V’s but are in two different patterns.
We also fix #2 and £? at small values, e.g. g = &* = 0.01.

Next, we consider the parameters in the mean functions . We allow the regression
coefficients of the auxiliary covariates to vary by pattern. However, it is typical to have
sparse patterns. As a result, we consider an informative prior that assumes regression

coefficients for neighboring patterns to be similar. In particular, we specify AR(1) type



priors on Bys and 3. For B, we assume

B~ N |Xs8,0255(p)|

where
B2 I
B3 I
ﬁ = . ’ Xﬁ = . )
B I
and
T pl - p’72I
1 pl 1 |
Z J—
pJ—QI pJ_3I . ]

The prior on 3 introduces three unknown hyperparameters B, 0[2_3 and p. We specify diffuse

normal, inverse Gamma and uniform priors, respectively,
B~ N(0,62I), o2 ~IG(\,)\;), p~ Unif(0,1).
Similarly, for By,

Bo~ N Xgﬁg, 0%025(/)0)] ., with hyper-priors
Bo~ N(0,631), o3 ~IGN,NP), po ~ Unif(0, 1).

The time/pattern specific intercepts are given conditional autoregressive (CAR) type
priors (De Oliveira, 2012; Banerjee et all 2014) as we expect them to be similar for
neighboring patterns/times. Let by = (bia, bi3, ..., byy) and b = (baa; bog, bs3; ... ;
bas, ..., bys). The potential neighbors of b;s are {b;_1s,bj41.4,b;5-1,b0j541}. Denote by
NE, ={(j',¢') : bjrs is neighbor of b;;} and N7, = [N7,| which is the number of neighbors
of bjs. The CAR type prior assigns conditional priors on b;, given its neighbors, and under

several regularity conditions the conditionals indicate a joint distribution. In particular,

we assuine
2
> Vo Y %
by [ bgs ~ N (B D S (b =5) 2 |
j's! G/\/‘]I;S Js Js



which induces a joint prior on b of the form
b~ N (1,037 — 3 IW) G
where
1/N?,, if (j,s) and (j', ") are neighbors;
(Wh)jsgrst =

0, otherwise,
N, = diag(1 /NJI?S), b is a mean parameter for b, o? is a variance parameter and 7, is a
spatial dependence parameter. Let (elf)_l and (eg)_l denote the max and min eigenvalues
of W. To guarantee that I — ~,W,, is positive definite, 7, is required to belong to (e}, €%).
Furthermore, it is not unreasonable to assume the spatial correlation is positive, i.e. 0 <
7, < €. We put hyper-priors on l;, o2 and 7,
b~ N(0,62), o2 ~ICGAL NS, 7, ~ Unif(0,€}).
Similarly, for by, we assume
by~ N (150, o (I — fybOWbO)*l./\/},o) ; with hyper-priors
bo ~ N(0,62), o ~IG(A\E,N8), 4, ~ Unif(0, el).
The time/pattern specific lag-1 coefficients are given CAR type priors similar to the

priors on bj, for the same reason. Let b = (192; 23, V335 ... Y2y, ..., ¥y5). We assume
P~ N (1&,05([ — %pr)*lNlp) ; with hyper-priors

U~ N(L,63), o ~IG(AY,AY), and 4y ~ Unif(0, e}).

A.3 MCMC Implementation Details

We introduce some notation as follows. First considering the responses. Denote by Ny the
number of subjects having dropout pattern s, s = 2,...,J. Let y;s denote the subjects’
responses at time j in pattern s, and Y, denote the subjects’ histories through the first j
times in pattern s, i.e.

Yis = (yljsa Y2jsy - - - >yNs,j,s>T>

Y}s = (yls7 Yosy - - - 7yjs) .



Let yyeco denote the initial responses (with no past) for all subjects, and yy.. denote the

subsequent responses (with measured pasts) for all subjects,

T T T\T
Yvecd = (y127 Yigs--- 7y1J>
T T ., T T T\T
Yvec = (y227 Y23, Y335+ Yags - - 7yJJ) .
We then consider the means and covariate matrices for the responses. Let a;, denote

the vector of random variables (we abuse notation slightly, let a;, include Yj_zsq&js when

J > 2, to simplify notation),
(aO(/UlsaS))"-aQO(IUNS,saS))Ta lf-] = 17

(a(yl,j—l,S7 U157j, S)) s aa(yNs,j—l,Sa ’UNS,Sa ja 8))T + Y/j—Q,Sd)jS? lfj Z 27

where v;, is the vector of auxiliary covariates for subject ¢ in pattern s. The vector a;s is

the mean of y;,. Let ay and a denote the vector of random variables,

_ (T T T\T
Qo = (012,013, X '7a’1J)
_(.T T T T T\T
Cl—<a22,023,a33,...,O,QJ,...,O,JJ) .
Denote by
T 2 2
2y, = diag (012[N2, e ,O'1JINJ) ,
T 2 2 2 2 2
Zy—dlag(022]]\7270-23[]\[3,0—33[]\[37...,O-QJ[NJ,...70-JJINJ).

Thus, the likelihoods for the initial responses y,.c.o and subsequent responses Yyec

are

Yveco | aop, 2yo ~ N(CL(), 23!0)7
Yvec | a, Ey ~ N(a7 Ey)

Next, we consider the priors for ag and a. Denote by

6o = (Bo, bo),
0 = (/67b7,lp7¢)7

where ¢ = (¢33; P34, Pass ... D3y, ..., D).



Let Dy and D denote the exponential distance matrices for ag and a (abuse notation
slightly, we use Dy and D to denote the matrices and Dy(a;b) and D(a;b) to denote the

distance functions),
DO = DO(V;/ecOa Svec0s V:/ecOa Svec())7
D = D(ylaga V;zeCa jvem Svec) ylag, V;/eca jvec: Svec)7
with
[DO]ijs,i’j’s’ = Do(”m S Vgt Sl)?
[D]ijs,i’j’s/ = D(yi,jfl,m Visy J5 S Yir i —1,8' ’Ui/s',j/, S/)-
Here Voo is the matrix of auxiliary covariates corresponding to Yyeco, Sveco 1S the vector of
patterns corresponding to Yveco, Ylag is the vector of lag-1 responses corresponding to Yyec,
Viee 18 the matrix of auxiliary covariates corresponding to Yyec, and Jyec and Sye. are the
vectors of times and patterns corresponding to Yyec-
We have
Qo ’ 00, /Qg ~ N(Xgoeo, K%Do + /%(2)1),
a|0,k* ~ N(Xp0,r*D + 1),
where Xy, and Xy are the design matrices corresponding to Equation (4.
Denote by Cy = k3Dy + k21 and C' = k*D + R*I. Integrating out ao and a, the
(marginal) likelihoods become
Yveco ‘ 907 Eym HS ~ N<X90007 Eyo + 00)7
Yvee | 0,5, 5° ~ N(X40,%, + C).

Update ag and a. It is not unusual to integrate out ag and a for posterior inference
on Gaussian process. However, we find that including a¢ and a in the posterior inference
would improve the mixing of the Markov chain. Therefore, we update ag and a at each
iteration.

1. The likelihood and prior for aq are

Yvecod | Qy, Eyo ~ N(a07 Eyo)a
Qo | 00,/{8 ~ N(X@OO(),C()),



which lead to the posterior
ag | 0o, K5, Xy, Yeeoo ~ N(ag, 3o ), where
Yo = [Co" + 5,17
a, =%, [Cy ' X,60 + E;01yveco]-
2. The likelihood and prior for a are
Yvee | @, Xy ~ N(a,X,),
a0, 5~ N(Xy0,0),
which lead to the posterior
a|0,5% %, Yec ~ N(a*,F), where
=0T+
a* =3 [C7 X080 + 5, Yee-

Update x2 and x?. 1. The likelihood and prior for k3 are
ao | 0o, ki ~ N(Xp,00, kg Do + R31),
kg ~ IG(ATO, A50).
The posterior for 3 is
p(k3 | 60, a0) x pn(ag | Xo,00, kg Do + FaI) - pra(kg | A0, A5°),

where py(x | p,X) represents (multivariate) normal density at & with mean g and co-
variance matrix ¥, and pig(z | a,b) represents inverse gamma density at z with shape
parameter a and rate parameter b. We use Metropolis-Hastings step to update x2.

2. The likelihood and prior for x? are
a0, r*~ N(Xy0,5*D + 1),
K%~ TG(AE,N5).
The posterior for &2 is
p(k? | 0,a) < py(a | Xe0, x>D + F21) - pra (K2 | N5, \5).
We use Metropolis-Hastings step to update x2.

7



Update X, and ¥,. The likelihood and prior for ajz»s are

Yijs | Qjs, 0]2'3 ~ N(a’jsa 0-32'3 )7

0]2-5 | Aoy Vo ~ IG(Ag, Aoy ).
The posterior for o7, is

)

N, RSS;
03 | Ao Vo, @, Y ~ 1G (Aa + 55 A + TJ)

where RSS;s = |ly;s — a;s|3-

There are two hyperparameters related to (7]2-5: Ao and v,. Their conditional posteriors

are
2 A 2 \~(-1)
p(Ao [ {05}, vs) T(\,)@ vz 1 75.) '
2,8
ex —Zik exp | — !
Pl w55 )
2,8
and

2 -1 A\,
I/Ul{O'?S},)\UNGamma<( +J)2(J ))\a+17 20_2-1-1).
js

j’s

We use Metropolis-Hastings step to update A,.

Update 6, and 6. We integrate out ay and a to update 6y and 0. The likelihoods

become

Yveco ‘ 007 Eym Hg ~ N(Xgoeo, zyo + OO)’
Yvec | 07 Zyv /{2 ~ N(X@O, Ey + O)

1. For 6, the prior is
00 ’ BO? Uéo? P05 BO? 0-1307 Yoo ™~ N<9~07 ZGO)?
where 6, = (Xﬁ,éo, 1l~)0), and

Y = diag(agozﬁ(p0)7 0'50 (I - 7b0Wb0)_1-/\/’bo)'



Thus, the posterior of 6y is

0o | Yveco, - - ~ N(65,%5,), where

-1
o [2 + X00 (Zyo + OO) ngo} 5

08 = 2;0 [2;()100 + X90 (Zyo + CO)i yvec0i| .

Yo =

2. For @, the prior is
0 | B,Jé,p, b, af,vb,lﬁ,aiﬁw,a(ﬁ ~ N(6,%),
where 6 = (Xg,é, 10, 14, 0), and
o = diag (035 5(p), 07 (I — WwWs) "Ny, 05 (1 — 7 W) Ny, 021) .
Thus, the posterior of 0 is

0| Yyee, ... ~ N(0",%5), where

1

=[S+ X (B, +C) ' Xe]
9 =3 [E;lé + XT(S, + C)*lyvec} .

Hyperparameters related to 3 and B;. There are three hyperparameters related to
B: 3, 0?3 and p. The conditional posteriors are as follows.

1. Conditional posterior of 3:

B B.o5,p~ N(B*,ZE), where

-1
.1 1 -

~ 1
=Y | S XY -13].
B 3 [0_% B 5(0) /8]
2. Conditional posterior of ¢73:

. J—1
0[23|ﬂ7/87pNIG|:/\f+ﬂa /\B

X+ (B XaB) D) B - XaB) |



3. Conditional posterior of p:

p(p | B.B,03)

oc det[o; S5 (p) ~']"? exp [—%(B ~ X5B)'Ss(p) 1B — XBB)]

Y

1
o (1= p*)9 % exp [—2—2 (P*Ra1 — 2pRgs)
95

where
J

J—1
Ry => 1B =Bl3  Re=) (Bs—B)(Bscr — B).
s=3

s=3

We use the following properties to derive the conditional posterior of p. The inverse and
determinant of ¥4(p) are
I —pl
—pl (1+p*)I —pl
—pl (1+p*) I —pI
—pI
(14 p5)I —pI
—pl 1

and det[Y5(p)7!] = (1 — p?)?, respectively. To update B and o3, we use regular Gibbs
steps. To update p, given {3, B, a%} we can easily evaluate its posterior on the [0, 1] grid,
and sample from it.

Similarly, there are three hyperparameters related to Bg: BO, ‘71230 and pg. Their condi-

tional posteriors have exactly the same form as those for 3, a% and p.

Hyperparameters related to b and by.  There are three hyperparameters related to
b: I;, o2 and 7;. The conditional posteriors are as follows.

1. Conditional posterior of b:

b | b, 02, vy ~ N(E*,(Sga), where
%2 1 L oppra B
O = |mt SN U=yl
b 9%

Tk * 1 —
b* = 5;? L_?lTM’ = %Wb)b] :

10



2. Conditional posterior of o7:

dim(b) 1

oy | b,b,7 ~1G | ] + 5 X + 5o 10) N, (I — 3 W) (b — 15)]-

3. Conditional posterior of ~,:

5 1 5 5
p( | b,b,02) oc det(I — Wy)Y% - exp | (b — 1) Ny "Wy (b — lb)} .

20}
To update b and o2, we use regular Gibbs steps. To update 7, given {b, b, 02} we can easily
evaluate its posterior on the [0, 1] grid, and sample from it. To facilitate computation, we
can calculate det(I —~;WW;)"/? on the [0, 1] grid, save the values and use it at each iteration.

Similarly, there are three hyperparameters related to by: l~)0, afo and 7p,. Their condi-

tional posteriors have exactly the same form as those for b, o2 and ;.

Hyperparameters related to @.  There are three hyperparameters related to ¥: 1,
J?p and v,. The conditional posteriors are as follows.

1. Conditional posterior of @Z):

7\; ’ ¢7 0-12/177770 ~ N('(Z*7 5122), where

-1

) 1 1., .

(51212: 5—2+U—21/N¢1(I—’}/¢W¢)1] s
P P
s *2 1 1 IAr—1
P %
2. Conditional posterior of o7;:
dim(3))

Nt L 1N = W) — w)} |

3. Conditional posterior of ~y,:
- 1 —_— -
Pl | 9,5,08) ox det(T = 3, 7W) /2 - exp [w o (= TOYN W) w)] .
(4

Hyperparameters related to ¢. There is one hyperparameter related to ¢: ai. The

conditional posterior is
2 o, Lo 6, L 7

11



Update intermittent missing responses. The focus of our method is dealing with
monotone missing data. Sometimes there are (typically few) intermittent missing responses,
and we impute it under the partial ignorability assumption (Harel and Schafer, 2009).

Suppose y;;s is missing. Its conditional distribution is

p (yijs | y—ijsa 7T) xXp (yvec07 Yvec | 7T) )

We use a Metropolis-Hastings step to update y;;,. We use a symmetric normal proposal

distribution, y5. ~ N (yf}f;, 0.5 % sd(Yvyeco, yvec))-

ijs

A.4 G-computation Implementation Details

The steps for conducting the G-computation for our setting are summarized in Algorithm

AT

Algorithm A.1 G-computation
1: forlin1,...,L do

2: forminl,...,M do

3: 1. Draw V* = v* ~ p(v* | ")

4: 2. Draw S* = s* ~ p(s* | v*, ")

5: 3. Draw Y = g* ~ p(y? | s*,v*, 7))

6: 4. Draw Y = g% ~ p(g} | 47,5, 0", w)
7. 5. Set Y*m) — (YY)

8: end for

9: end for

10: return (1/ML)-> .t [Y*(m,l)}

Next, we describe in detail how to draw the pseudo responses using Gaussian process
prediction rule, i.e. steps 3 and 4 in Algorithm We generally use a superscript * to

denote the pseudo subject and response.

Observed response. To draw a vector of pseudo observed responses Y, = y: from

p(yl | s*,v*, ), we do the following.

12



1. Draw yj from p(y; | s*,v*,m). Consider the joint distribution of aj,. = ao(v*, s*) and
the training data points Yyeco,

Yveco N X@Q 00 Zy() + C(O ig*

aIs* IMIS* Cikg; Cik:*

where

* * *
Hyig» = MO(’U ) S )7

* Lok %
Cls* = CO(‘/\/eC()?‘SveCO?'v S )7

T = Cp(v, s"; 0%, 7).

s*

The predictive distribution for aj,. is thus

Yveco, T N[ﬂ'is* + C;;I; (EyO + CO)_I(yveCO - X9000)7
Toe = (B0 + Co) 'O,

*
als*

and we can draw
* * * 2
A | Apgx ™ N(a1s*>013*)-

Integrating out aj,., the above two steps simplify to

* ~ % ~2
Y1 | Yveeo, ™ ~ N (17, 07,-), where

/T{s* - :uis* + Ciksj; (ZyO + CD>_l(yvec0 - X9090)7
é-%s* - T;k* - Ciksj’: (EyO + CO)_lciks* + U%s*‘
2. Draw y; from p(y;“ | g;fl,s*,v*,ﬂ), (1 < 7 < s*). The joint distribution of Wi =

a(y;_y,v",5,8%) + g;fgqus* and the training data points Yye. is

Yvec ~N X0 Zy +C C;S*
@jge Wi+ Ui LoPis Cse Cii

where

x * * %
lujs* - :u(yjfhlv v Js S )7
st* = C(ylaga‘/vecvjvecysvecayj—lav 'S )7

Cﬂf* = C(y;f—lvv*aja S*;y;—hv*?j’ S*)'

Jjs*

13



The predictive distribution for aj,. is thus

7~ N5 + 510 + CHE(Ey + C) 7 (Yoo — Xo),
*ok *T —1 vk
C Ojs* (Ey + C) Ojs*} )

Js*

and we can draw

Y; | aje ~ N(aj o2.).

]8*7 ]S*

Integrating out a*_., the above two steps simplify to

js*
Ui | Y1, Yveos ™ ~ N(fi,0,075..), where

g = Wiee + U oBje + CrE (S 4+ O)  (Yoee — X0),
52 =Chao — C1 L (2, + O)'Che + 07

Missing response. To draw a pseudo response Y;* = y; from the extrapolation distri-
bution p(y; | yj_;, s, v*,w) (j > s*), do the following.
(I) Under MAR,

p(y; | g1, 0" S = " w) =p(y; | g1, 0", S > j,w)

J

Z&k]p y] |y] 1,V * S k w) (1>
k=j

where

A = Ofkj(ﬂ;f—lav*) :p(S =k | g;—lav*ys Z j)
gL v S =R p(S = k[ v", S > )
S @iy | v, S=k) p(S =k |v*,S > )

The above expression can be calculated by

k=j,....J

p(y;_1 | v, S =k) =pi(y; [ v7) Hpk v Yimy,v)
where

pe(yi | v*) = pn (U5 | i3 030,

pe(yr | i v") = o (i | A, 03)

14



and

p(S=k|v",52>))
k—1
=p(S=k|v,S>k) [[p(S=1+1|v"8=>1)
I=j
k—1
=p(S=k|v,S>k) - [[L-pS=1]v,8=>1).
l=j
To sample from , after calculating (o, ..., @y ;), we can draw K = k with probability
arj, and sample Y;* = y* from pi(y; | 9j_;, v*, w).

(II) Under NFD.
(II-1) For j = s* + 1,

[Yj | ﬁ—laS:j_ ].,V,(AJ} g [YJ+T] | }73'—1752].7‘/)“)} .
We first sample from p>;(y; | 7_;,v",w). Then, we apply the location shift (©) with
Tj(g;‘ﬁ—la ’U*) =T Aj(g;—la ’U*),

where Aj(y;_,,v*) is chosen to be the standard deviation of p; 1(y; | ¥7_,,v", w) under
MAR, i.e. p>;(y; | y;_, v, w). We have
J
-2

p>i(y; | Yj1, 0" w) = Z N ([, O )-
k=j

The standard deviation of this normal mixture is given by

J J J 2
NG5 07) = \| D g+ Y gl — (ZO"“”:L ;‘“> |
(II-2) For j > s* +1,
p(y;k | g;f_l,'v*,S =s" w) :p(y;.‘ | 'g;‘_l,v*,S >j—1w)
J
- Z Oékd'—lp(y; ’ g;—17v*’5 = kvw)v (2>

k=j—1

15



where

j1 = apj1(Y;_,v") =p(S=k|y;_,v",S>j—1)
pyj | v, S=k)p(S=Fk|v5S>j—1)

= 7 — - y k:j—17’J
Zk:j—lp(y;—l | ’U*,S = k) p(S =k | ’U*,S Z J— 1)
To sample from , after calculating (aj_1,-1,...,7,-1), we can draw K = k with

probability ay ;1.
(II-2a) If k = j — 1, draw again K’ = k" with probability ay ;—1/(1 — aj_1,-1) for k' =
Jy--+»J. Then, sample Y =y from pp(y; | §;_,,v",w), and apply the location shift ©-
(I-2b) If k € {j,..., J}, sample Y} = yi from pi(y} | yj_,, v", w).

The steps for sampling the pseudo response Y* = y* from p(y* | s*, v*,w) are summa-

rized in Algorithm [A.2]

16



Algorithm A.2 Draw Y* = y* from p(y* | s*, v*,w)

1: Draw va = ?JT ~ N(ﬂis*’ 6%3*)
2: for jin 2,...,s* do
. * % ~ % ~2
3. Draw Y =y ~ N(fi},,55.)
4: end for
5. if MAR then

6: for jins*+1,...,J do

7: Calculate a;(y;_;, v*) = (ayj, - - -, ;)

8: Draw K = k ~ Categorical[(j, ..., J); o]
9: Draw y¥ ~ N ({5, 6%,)

10: end for

11: else if NFD then

12: Set j =s"+1

13: Calculate a(y;_;,v") = (ayy, . .-, )
14: Draw K = k ~ Categorical[(j, ..., J); a;]
15: Calculate 7;(y;_;,v*) =7 - A;(y;_,, v")
16:  Draw y ~ N(fi%, + 7,07,

17: for jin s*+2,...,J do

18: Calculate a1 (¥} _1,v*) = (@j_15-1,---,Qy51)

19: Draw K = k ~ Categorical[(j — 1,...,J); oj_1]

20: if k=7 —1 then

21: Calculate o = (-1, ., az;-1)/(1 —aj1;-1)
22: Draw K’ = k' ~ Categorical|(j, ..., J); o]

23: Calculate 7;(y;_1,v*) = 7 - Aj(yj_y, v)

24: Draw yf ~ N (i}, +7;,075.)

25: else

26: Draw yf ~ N (i}, 62)-

27 end if

28: end for

29: end if
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A.5 Simulation Details

Prior and hyper-prior parameters. We set the prior and hyper-prior parameters at
standard noninformative choices. We generally use N(0, (v/30)?) and IG(1,1) as nonin-
formative normal and inverse-gamma priors, respectively. Since we have standardized the
covariates and responses, it is thought unlikely that the regression coefficients would have
a scale greater than v/30 ~ 5.5. Table shows the exact values. We set k3 ~ IG(10,1)
and k? ~ IG(10,1) to shrink the semiparametric model towards a simple linear regression
model. We also set AY = 30 and )\g = 1 to shrink ¢;; towards 0. Since higher order
lag responses are highly correlated with lag-1 responses, shrinking ¢;s towards 0 helps us

correctly identify the effect of lag-1 responses.

A 10 | Ay 1|63 30|63 30|62 30
PV IO VS T D VU B IO VU B I VA |
DU (VRIS VG B I VU B AP VR DV |
s 1| Ay 1] 62 30|62 30| A7 30

Moo X 1A
Ay 1A 1], 01

Table A.2: Choices of hyperparameters in the observed data model. These hyperparameters

are used for simulations and real data analysis.

Scenario 1. The covariance matrix for generating V' is

1.0 0.52 —=0.22 0.07
0.52 1.0 —-0.23 -0.02
—-0.22 —-0.23 1.0 0.45
0.07 —=0.02 0.45 1.0

Ev’u -

which is the correlation matrix of the subjects’ numerical auxiliary covariates from the
schizophrenia clinical trial dataset.

The parameters for generating S are

¢ = (—4.346,—-2.193, —2.606, —2.678)",
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where (; corresponds to the (s — 1)-th element (s = 2,...,5), and

—1.057 0.328 —0.121  0.273
—-0.826 0.128  0.525 —0.781
—0.487 0.479  0.534 —0.480

0.642 0.129  0.448 0.122

where & corresponds to the (s —1)-th column (s = 2,...,5). These parameters come from
fitting the sequential logistic regression model to the test drug arm of the schizophrenia
clinical trial dataset and taking posterior mean of each parameter.

The parameters for generating Y are

0.232 0.221
0.365 0.243 0.196
{02} = 0403 0222 0228 0.941 :
0.438 0.228 0.225 0.213 0.284

0.335 0.192 0.265 0.140 0.167 0.160

where 0]2-5 corresponds to the element in the (s — 1)-th row and j-th column;

0.069 —0.191
0.507 0.219  0.302
(bo,b) = | 0.393 0.060 —0.022  0.399 :
0.798  0.048 —0.051  0.051  0.362

0.384 —0.107 —0.250 —0.367 —0.250 —0.321

where b, corresponds to the element in the (s — 1)-th row and j-th column;

—0.046  0.174 —-0.005 0.024  0.230

3 —0.200 —0.099 -0.124 —-0.451 —-0.163
0 = )

—-0.315 —-0.191 -0.104 0.140 0.032

—0.053  0.065 0.003 —-0.044 —0.092
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where B, corresponds to the (s — 1)-th column;

—0.080 —-0.117 —-0.118 0.010  0.066
-0.044 —-0.113  0.023 -0.035 —0.030
—0.109 —-0.020 —-0.014 -0.022  0.056

0.170  0.127  0.166 —0.060  0.002

where 3, corresponds to the (s — 1)-th column;

1.078
1.088 0.938
(¢1) = | 0.830 0.893 0.830 ,
0.637 0.877 0.907 1.065

0.881 0.871 0.842 0.929 0.943

where ¢, corresponds to the element in the (s — 1)-th row and (j — 1)-th column;

—0.045

0.040 —-0.025

0.021  0.022 0.035

0.089  0.129 0.019 -0.020

where ¢q;, corresponds to the element in the (s — 2)-th row and (j — 2)-th column; and

0.011
0.074
0.037
0.037
<¢3) = ’
0.021
—0.027
0.078 0.010
—0.086
—0.009

where ¢35 corresponds to the element in the (s — 3)-th row and (j — 3)-th column. These
parameters come from fitting the linear regression model to the test drug arm of the

schizophrenia clinical trial dataset and taking posterior mean of each parameter.
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Scenario 2. We use the same choices of by, b, ¢1, ¢ and ¢3 as in Scenario 1. We set

1.0 052 —-0.22
—0.22 —-0.23 1.0

i.e. the upper left 3 x 3 submatrix of ¥,, in Scenario 1. We change {(TJQ»S}, ¢, & By and 3

to

0.155 0.101
0.217 0.133 0.112
{o2.} = 0.099 0.082 0.101 0.115 ,
0.141 0.127 0.169 0.132 0.107

0.106 0.119 0.095 0.081 0.266 0.174

where 0]2-8 corresponds to the element in the (s — 1)-th row and j-th column;
¢=(-3.0,-21,-1.6,-1.3)",
where (, corresponds to the (s — 1)-th element (s = 2,...,5), and

—1.057 0.328 —0.121  0.273
—0.826 0.128  0.525 —0.781
—0.487 0479  0.534 —0.480
—0.528 0.164 —0.061  0.136
€= —0413 0.064 0.263 —0.390 |,
—0.244 0.239  0.267 —0.240
0.321 0.064 0.224  0.061
—0.528 0.164 —0.061  0.136
—0.413 0.064  0.263 —0.390
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where &, corresponds to the (s — 1)-th column (s =2,. ..

Bo =

—0.530
—0.366
0.351
0.283
—0.316
0.288
0.033
—0.083
0.124

—0.508
—0.377
0.309
0.291
—0.321
0.285
0.030
—0.087
0.125

—0.561
—0.421
0.323
0.282
—0.319
0.293
0.033
—0.094
0.115

where (B, corresponds to the (s — 1)-th column;

—0.395
0.320
0.331
0.317
0.354

—0.301

—0.082

—0.077

—0.129
0.025

—0.021

—0.015
0.004

—0.387
0.337
0.349
0.315
0.355

—0.299

—0.082

—0.088

—0.126
0.022

—0.020

—0.015
0.003

—0.427
0.339
0.400
0.309
0.342

—0.303

-0.073

—0.082

—0.130
0.024

—0.020

—0.014
0.004

where 3, corresponds to the (s — 1)-th column.

Scenario 3. The parameter for generating K is

—0.507
—0.417
0.318
0.277
—0.319
0.288
0.020
—0.082
0.120

—0.434
0.317
0.385
0.313
0.354

—0.306

—0.068

—0.085

—0.133
0.022

—0.022

—0.015
0.003

5).

—0.525
—0.386
0.346
0.275
—0.316
0.289
0.033
—0.092
0.116

—0.443
0.338
0.356
0.310
0.349

—0.306

—0.079

—0.081

—0.128
0.023

—0.024

—0.019
0.002

7 = (0.119,0.579,0.001,0.115,0.186),
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which is taken from |Linero and Daniels (2015) by fitting the mixture model to the active
control arm of the schizophrenia clinical trial dataset.
The parameters for the joint distribution of Y and V are specified and generated as

follows. Within mixture component k, the joint distribution of Y and V is

| K =k~ N [p® Q"]
v

where

00~ W (v =T = Q - 1) v),
k k

g _ [ Zw T
’ S0 5,

Here Mz(/k) and Q(()k) correspond to a linear model of (Y | V'), where
V|K=k~N(0,%,,),
V. k3 (4 VT, o)

§/j | 17]'—17‘/7[( =k~N (bgk) + VTIB(k) + ng'k)y}—l» UQ(k)) ) .7 = 2) trt J.

J

Let b® = 0, ... bi)T, B® = (8, 80, ..., B®)), 5 = diag(a7¥, ..., 07",

0 0 o --- 0
o 0 0 - 0

Pk — o ¢ 0o - 0|,
0 0 ¢ 0

and ®*) = (I — (IJ(’“))_I. We have
Mék) — (i)(’f)b(k)7

20 — $0 pRTS BRGMT 4 H® 5k GHT

vy

(k) — k) Ty
Yyv vU -

Y
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We use the same ¥, as in Scenario 2. The parameters {uz(,,k)} and Z((]k) are taken from
Linero and Daniels (2015) (after standardization), which are generated by fitting the model

to the active control arm of the schizophrenia clinical trial dataset. In particular,

0.715 0.559 —-0.649 —-0.085 0.677
0.581 0.406 —-1.368 —0.207 0.799
0.329 0.175 —1.404 —-0.851 0.944
{Mék)} = )
0.319 —-0.217 —1.650 —1.181 1.276
0.880 —0.473 —1.765 —1.363 0.483
—0.664 —0.593 —3.195 —1.562 1.081

where y,?(f)

corresponds to the k-th column. Then, we add the effects of auxiliary covariates
by randomly generating B®*) and ®®) (values not shown). Based on B®) &®) % = and

Eék) we calculate Q(()k). Finally, we generate Q%) ~ W1 ((u —-J-Q - 1)Qék), 1/) and get

00 13 17 19 23 26|-1.0 —04 04
13 22 29 34 42 49|-16 —04 09
17 29 41 48 59 70[-21 —04 14
19 34 48 58 71 83|-24 —03 17
QW = 23 42 59 71 88 104|-30 —-04 22 [,
26 49 70 83 104 122|-35 —04 2.6
~1.0 —-16 -21 -24 —-3.0 —35| 17 05 —0.2
04 —04 —04 —03 —04 —04| 05 0.7 —0.1
04 09 14 17 22 26|-02 —01 12
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02 03 03 04 05 06]-02 =03 0.3
03 06 08 10 13 16|-02 =03 0.7
03 08 12 15 19 24]-03 —-02 1.0
04 10 15 20 25 31|-04 —-01 1.2
05 13 19 25 32 40|-04 —-02 1.6
06 16 24 31 40 50|-04 —-02 21
-02 -02 -03 -04 -04 —-04| 05 01 0.1
-03 -03 -02 -01 —-02 —-02| 01 09 —-04
03 o0v 10 12 16 21| 01 —-04 1.2
1.2 13 13 13 15 16|-08 —-08 04
13 15 16 17 19 21,-09 —-07 06
1.3 16 17 19 22 24|-09 -05 0.7
13 17 19 21 24 27|-09 —-04 038
1.5 19 22 24 29 33|-1.1 —-04 09
16 21 24 27 33 37|-12 -03 11
-08 -09 -09 -09 -11 —-12| 0.8 05 —0.1
-08 -0.7v =05 —-04 —-04 —-03| 05 09 -0.1
04 06 07 08 09 11]-01 -01 06
1.0 13 15 17 20 22|-09 —-0.7 0.5
1.3 20 24 27 32 36|—-14 —-07 06
1.5 24 29 34 40 45|-17 =07 038
1.7 27 34 40 47 54|-20 -0.7 09
20 32 40 47 56 63]-23 —-07 1.0
22 36 45 54 63 73]-26 —-07 1.2
-09 -14 -1.7 =20 -23 -26| 13 0.5 —-0.1
-0.7 -0.v -0.7 -0.7 =-0.7 =077 0.5 09 -0.2
05 06 08 09 10 12}|-01 =02 0.7
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08 10 13 15 17 20[-08 —04 05
10 17 22 27 32 38|-14 —03 0.7
1.3 22 29 37 43 51|-18 —02 1.0
1.5 2.7 37 48 57 67|-22 —01 12
06 = 1.7 32 43 57 68 80|-26 —01 14 [,
20 38 51 67 80 95/-31 —00 1.7
—0.8 —14 —-18 —22 —26 —3.1| 14 03 —03
—04 -03 —02 —01 —01 —00| 03 05 —0.1
05 07 1.0 12 14 1.7/-03 —01 0.7

The parameters for generating S are
¢ = (—2.61,-2.75,-2.08, —1.52)",
where (s corresponds to the (s — 1)-th element (s = 2,...,5),
¥ = (—0.96,0.66,0.78,0.54)",
where 1), corresponds to the (s — 1)-th element (s = 2,...,5), and

—1.057 0.328 —0.121  0.273
E=| —0.826 0.128 0.525 —0.781 |,
—0.487 0.479  0.534 —0.480

where &, corresponds to the (s — 1)-th column (s = 2,...,5). The parameters are chosen

to mimic the dropout rate of the real data.

MNAR results. Detailed simulation results for Scenario 3 under MNAR are given in
Table [A.3l

A.6 The Schizophrenia Clinical Trial Data Analysis
Details

Comparison with previous results. Table shows a comparison of data analysis re-
sults with Linero and Daniels| (2015)) under both the MAR and the mixture of MAR/MNAR

assumptions.
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Model  E(7) Bias CI width  CI coverage MSE
GP  -0.25 -0.055(0.007) 0.687(0.002) 0.940(0.010) 0.063(0.002)
0 -0.014(0.007) 0.690(0.002) 0.972(0.007) 0.061(0.002)
0.25  0.027(0.007) 0.693(0.002) 0.968(0.008) 0.063(0.002)
0.5 0.069(0.008) 0.699(0.002) 0.946(0.010) 0.068(0.002)
LM -0.25 -0.042(0.007) 0.725(0.002) 0.961(0.008) 0.066(0.002)
0 -0.001(0.007) 0.728(0.002) 0.980(0.006) 0.065(0.002)
0.25  0.042(0.008) 0.734(0.002) 0.972(0.007) 0.068(0.002)
0.5  0.085(0.008) 0.741(0.002) 0.948(0.010) 0.075(0.002)
LM~ -0.25 -0.047(0.007) 0.751(0.002) 0.972(0.007) 0.068(0.002)
0 0.015(0.007) 0.761(0.002) 0.987(0.005) 0.068(0.002)
0.25  0.079(0.007) 0.768(0.002) 0.966(0.008) 0.075(0.002)
0.5  0.144(0.008) 0.783(0.003) 0.909(0.012) 0.092(0.003)
DPM  -0.25 -0.040(0.007) 0.789(0.002) 0.982(0.006) 0.072(0.002)
0 -0.008(0.008) 0.792(0.002) 0.984(0.006) 0.071(0.002)
0.25  0.024(0.008) 0.794(0.002) 0.982(0.006) 0.072(0.002)
0.5 0.056(0.008) 0.798(0.002) 0.965(0.008) 0.075(0.002)
DPM- -0.25 -0.052(0.007) 0.703(0.002) 0.958(0.009) 0.065(0.002)
0 -0.001(0.008) 0.709(0.002) 0.967(0.008) 0.064(0.003)
0.25  0.050(0.008) 0.716(0.002) 0.947(0.010) 0.066(0.002)
0.5  0.098(0.008) 0.725(0.002) 0.914(0.013) 0.074(0.003)

Table A.3: Summary of simulation results for Scenario 3 under MNAR. Values shown
are averages over repeat sampling, with numerical Monte Carlo standard errors in paren-
theses. CI width and coverage are based on 95% credible intervals. The values of E(7),
—0.25, 0, 0.25 and 0.5, correspond to prior specifications Unif(—0.75,0.25), Unif(—0.5,0.5),

Unif(—0.25,0.75) and Unif(0, 1), respectively.

Sensitivity analysis. Figure shows how inferences on rt — rp and rp — rp change

for different choices of 7r, 7o and 7p.
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Model MDM rT — TP TA — TP

NP MAR 0.6(-5.1, 7.0)  -6.1(-13.9, 1.7)
L & D (2015) MAR “1.7(-8.0, 4.8)  -5.4(-12.6, 2.3)
NP MAR/MNAR  0.9(-5.3,7.8)  -6.4(-14.3, 1.8)
L & D (2015) MAR/MNAR  -1.6(-84,5.4)  -6.2(-13.8, 2.0)

Table A.4: Comparison of inference results with Linero and Daniels (2015). NP represents

the proposed model, and L & D (2015) represents the model in |Linero and Daniels (2015).

MDM refers to the missing data mechanism. Values shown are posterior means, with 95%

credible intervals in parentheses.

1.0

-3.0
-35
-4.0
-4.5
-5.0
-5.5
-6.0

-6.5

Figure A.2: Contour plots showing inferences on treatment effects rr —rp (left) and rp —rp
(right) for different choices of the sensitivity parameters along the [0, 1] grid. The colors
represent posterior means of r, — rp, where a deeper color indicates larger improvement

compared to placebo. The black contour lines show posterior probabilities of r, — rp < 0.

A.7 Computational Details

We report computational details for the simulation studies and the schizophrenia clinical

trial data analysis here.

Chain lengths. For all the simulation studies, we run 15,000 iterations to obtain samples
from p (71' | {Yis,, Si, Vi f\;l) (under the Gaussian process and AR/CAR priors, see Equation
. We discard the first 5,000 draws as initial burn-in, and keep every 10th iteration. We
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run 10,000 iterations to sample from p (¢ | {s;,v;}¥,), discarding the first 5,000 draws and
keeping every 5th iteration. Finally, we directly draw 1,000 samples from p (7) | {vl}f\il) As
a result, we have L = 1,000 posterior draws for 7, ¢ and n, i.e. {'wg) = (7, W n0) 1 =
1,...,1000}. Next, in the G-computation, for each posterior draw, response values for
M = 1,000 pseudo subjects are generated.

For the real data analysis, we run 50,000 iterations to sample from p (7 | {¥is,, 51, v}V ),
discarding the first 10,000 draws and keeping every 40th iteration. In the G-computation,

for each posterior draw, response values for M = 20, 000 pseudo subjects are generated.

Chain mixing and convergence diagnostic. We present some convergence diagnostics
of the Markov chains using the R package coda (Plummer et al. |2008). Without loss of
generality, we use the test drug arm of the schizophrenia clinical trial data as an example.

First, we compute the Geweke diagnostic (Geweke, 1991)) for a single Markov chain,
which takes the first L; draws and the last L, draws of the Markov chain and makes a
difference of means test for the two parts. If the draws are from the stationary distribution,
the difference of the means should have an asymptotically standard normal distribution.
By default, we set L; = 0.1+ L and Ly = 0.5 L. As an example, we use the time/pattern
specific intercepts b as the test statistics. The Geweke z-score and the corresponding p-
values are reported in Table [A.5] All p-values are greater than 0.05, indicating no evidence
of lack of convergence.

We also compute the Gelman-Rubin diagnostic (Gelman and Rubin| [1992)) for multiple
Markov chains. We run three chains with different random seeds and compare the draws
from the three runs. We calculate the potential scale reduction factor (PSRF, or Gelman-
Rubin statistic) for the three chains. The PSRF is a weighted sum of within-chain and
between-chain variances. A PSRF close to 1 indicates the three chains are similar to each
other, i.e. convergence of the chains to the target distribution. For the multivariate b, the
multivariate PSRF (Brooks and Gelman| 1998) is 1.08. Figure shows the traceplot
of by, for the three Markov chains. To summarize, there is no strong evidence that the

Markov chains are not converging.
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Test stat. | z-score | p-value | PSRF | PSRF upper CI
bao -1.14 0.25 1.01 1.05
bas -0.74 0.46 1.00 1.00
b33 1.32 0.19 1.00 1.01
boy 1.25 0.21 1.01 1.01
bs4 0.26 0.79 1.02 1.07
b4 -0.57 0.57 1.01 1.01
bos 0.52 0.60 1.01 1.02
bss -1.62 0.11 1.01 1.05
bys -1.45 0.15 1.01 1.03
bss -0.07 0.94 1.00 1.01
bas 0.75 0.45 1.01 1.02
bss -0.28 0.78 1.01 1.05
bas -1.56 0.12 1.01 1.03
bse 0.67 0.50 1.01 1.03
bes 1.23 0.22 1.01 1.02

Table A.5: Convergence diagnostics. Columns 1 to 4 show the Geweke z-scores, corre-
sponding p-values of the z-scores, potential scale reduction factors (PSRFs) and upper

confidence limits of the PSRFs for the test statistics b = (bao, . . . , beg), respectively.

Computing specifications and times. All computations in this paper are conducted
using Lonestar 5 at the Texas Advanced Computing Center (TACC). The computations
for multiple replicates of the simulated datasets are conducted in parallel using multiple
cores and multiple computing nodes. Each computing node is a Xeon E5-2690 v3 (Haswell)
with 12 cores per socket (24 cores/node), 2.6 GHz (https://portal.tacc.utexas.edu/
user-guides/lonestarb).

The average computing times for all model components and all data analysis scenarios
are summarized in Table . The time to sample from p (71' | {Yis;» Si 'Uz-}f-\;l) depends on
the number of subjects and on the dropout rates. A scenario where the subjects have lower

dropout rates has more observed responses, and thus sampling from p (71' | {Yis,, 51, i}V 1)
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Figure A.3: Traceplot of byy for the three Markov chains in three different colors.

takes longer. Therefore, although simulation scenarios 1, 2 and 3 have the same number

of subjects, their times for sampling from p (7 | {@is,, s;, v;}L,) are different. Table
shows the time for G-computation under MAR. Under MNAR, the time needed for G-

computation increases by 1.5 to 2 fold depending on the dropout rates.
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N | J | Time for GP | Time for BART | Time for G-comp.
Simu. 1 | 200 | 6 8500 160 9500
Simu. 2 | 200 | 6 6000 160 9500
Simu. 3 | 200 | 6 7000 160 9500
Test 81 | 6 4400 60 5500
Active | 45 | 6 1700 40 2800
Placebo | 78 | 6 4000 60 4900

Table A.6: Average computing time (in seconds) for each model component and each
data analysis scenario. The values N and J represent the number of subjects and num-
ber of time points for the corresponding scenario, respectively.
BART and time for G-comp.
p (7 | {Giss» si,v:}Y, ), drawing L, samples from p (¢ | {s;, v;}1 ) and generating M pseu-
do subjects for L posterior draws under MAR, respectively. For the simulation scenarios,
L, = 15,000, L, = 10,000, M = 1,000 and L = 1,000. For the real data analysis,
L. = 50,000, L, = 10,000, M = 20,000 and L = 1,000, where the M = 20,000 pseudo

are in short for the times for drawing L, samples from

subjects are drawn using 20 parallel threads (each thread generates 1,000).
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