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A.1 The Schizophrenia Clinical Trial Dataset Details

Figure A.1 shows individual trajectories and mean responses over time for the three treat-

ment arms.

Figure A.1: Trajectories of individual responses (dashed black lines) and mean responses

(thick red lines) over time for the active control, placebo and test drug arms.

Table A.1 shows detailed dropout rates for each dropout pattern.
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Si = 2 Si = 3 Si = 4 Si = 5 Overall

Test 4.9 (3.7) 12.3 (9.9) 8.6 (8.6) 7.4 (7.4) 33.3 (29.6)

Active 2.2 (2.2) 4.4 (2.2) 8.9 (6.7) 4.4 (4.4) 20.0 (15.6)

Placebo 3.8 (3.8) 5.1 (5.1) 11.5 (11.5) 5.1 (5.1) 25.6 (25.6)

Table A.1: Dropout rates (%) for different dropout patterns in the three treatment arms,

with informative dropout rates in parentheses.

A.2 Prior Details

The standardized values for v, yj−1, j and s are calculated by

viq =
viq −mean(v·q)

sd(v·q)
, y

i,j−1 =
yi,j−1 −mean(y·,j−1)

sd(y·,j−1)
,

j
i

=
ji −min(j·)

max(j·)−min(j·)
, si =

si −min(s·)

max(s·)−min(s·)
.

We then consider the parameters in the covariance functions (5). We put inverse Gamma

priors on κ20 and κ2,

κ20 ∼ IG(λκ01 , λ
κ0
2 ), κ2 ∼ IG(λκ1 , λ

κ
2).

For simplicity, we fix the length scales γv0, γs0, γy, γv, γj and γs. For example, in practice,

we set γ2v0 = Q to introduce moderate correlation between the initial responses of two

subjects with similar V ’s; we set γy = γv = Q + 1 to introduce moderate correlation

between the subsequent responses of two subjects with similar Yj−1’s and V ’s and to let

the effect of the lag-1 response to be roughly equal to an auxiliary covariate; we set γj = 5

to introduce strong correlation between the subsequent responses of one subject measured

at two different time points; we set γs0 = γs = 5 to introduce strong correlation between the

responses of two subjects with the same Yj−1’s and V ’s but are in two different patterns.

We also fix κ̃20 and κ̃2 at small values, e.g. κ̃20 = κ̃2 = 0.01.

Next, we consider the parameters in the mean functions (4). We allow the regression

coefficients of the auxiliary covariates to vary by pattern. However, it is typical to have

sparse patterns. As a result, we consider an informative prior that assumes regression

coefficients for neighboring patterns to be similar. In particular, we specify AR(1) type
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priors on β0s and βs. For βs, we assume

β ∼ N
[
Xββ̃, σ

2
βΣβ(ρ)

]
,

where

β =


β2

β3

...

βJ

 , Xβ =


I

I
...

I

 ,

and

Σβ(ρ) =
1

1− ρ2


I ρI · · · ρJ−2I

ρI I · · · ρJ−3I
...

...
...

ρJ−2I ρJ−3I · · · I

 .

The prior on β introduces three unknown hyperparameters β̃, σ2
β and ρ. We specify diffuse

normal, inverse Gamma and uniform priors, respectively,

β̃ ∼ N(0, δ2βI), σ2
β ∼ IG(λβ1 , λ

β
2 ), ρ ∼ Unif(0, 1).

Similarly, for β0s,

β0 ∼ N
[
Xββ̃0, σ

2
β0

Σβ(ρ0)
]
, with hyper-priors

β̃0 ∼ N(0, δ2β0I), σ2
β0
∼ IG(λβ01 , λ

β0
2 ), ρ0 ∼ Unif(0, 1).

The time/pattern specific intercepts are given conditional autoregressive (CAR) type

priors (De Oliveira, 2012; Banerjee et al., 2014) as we expect them to be similar for

neighboring patterns/times. Let b0 = (b12, b13, . . ., b1J) and b = (b22; b23, b33; . . . ;

b2J , . . ., bJJ). The potential neighbors of bjs are {bj−1,s, bj+1,s, bj,s−1, bj,s+1}. Denote by

N b
js = {(j′, s′) : bj′s′ is neighbor of bjs} and N b

js = |N b
js| which is the number of neighbors

of bjs. The CAR type prior assigns conditional priors on bjs given its neighbors, and under

several regularity conditions the conditionals indicate a joint distribution. In particular,

we assume

bjs | b−js ∼ N

b̃+
∑

j′s′∈N bjs

γb
N b
js

(
bj′s′ − b̃

)
,
σ2
b

N b
js

 ,
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which induces a joint prior on b of the form

b ∼ N
(
1b̃, σ2

b (I − γbWb)
−1Nb

)
,

where

(Wb)jsj′s′ =

1/N b
js, if (j, s) and (j′, s′) are neighbors;

0, otherwise,

Nb = diag(1/N b
js), b̃ is a mean parameter for b, σ2

b is a variance parameter and γb is a

spatial dependence parameter. Let
(
eb1
)−1

and
(
eb2
)−1

denote the max and min eigenvalues

of Wb. To guarantee that I − γbWb is positive definite, γb is required to belong to (eb2, e
b
1).

Furthermore, it is not unreasonable to assume the spatial correlation is positive, i.e. 0 <

γb < eb1. We put hyper-priors on b̃, σ2
b and γb,

b̃ ∼ N(0, δ2b ), σ2
b ∼ IG(λb1, λ

b
2), γb ∼ Unif(0, eb1).

Similarly, for b0, we assume

b0 ∼ N
(
1b̃0, σ

2
b0

(I − γb0Wb0)
−1Nb0

)
; with hyper-priors

b̃0 ∼ N(0, δ2b0), σ2
b0
∼ IG(λb1, λ

b
2), γb0 ∼ Unif(0, eb01 ).

The time/pattern specific lag-1 coefficients are given CAR type priors similar to the

priors on bjs for the same reason. Let ψ = (ψ22;ψ23, ψ33; . . . ;ψ2J , . . . , ψJJ). We assume

ψ ∼ N
(
1ψ̃, σ2

ψ(I − γψWψ)−1Nψ
)

; with hyper-priors

ψ̃ ∼ N(1, δ2ψ), σ2
ψ ∼ IG(λψ1 , λ

ψ
2 ), and γψ ∼ Unif(0, eψ1 ).

A.3 MCMC Implementation Details

We introduce some notation as follows. First considering the responses. Denote by Ns the

number of subjects having dropout pattern s, s = 2, . . . , J . Let yjs denote the subjects’

responses at time j in pattern s, and Ȳjs denote the subjects’ histories through the first j

times in pattern s, i.e.

yjs = (y1js, y2js, . . . , yNs,j,s)
T ,

Ȳjs = (y1s,y2s, . . . ,yjs) .
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Let yvec0 denote the initial responses (with no past) for all subjects, and yvec denote the

subsequent responses (with measured pasts) for all subjects,

yvec0 =
(
yT12,y

T
13, . . . ,y

T
1J

)T
yvec =

(
yT22,y

T
23,y

T
33, . . . ,y

T
2J , . . . ,y

T
JJ

)T
.

We then consider the means and covariate matrices for the responses. Let ajs denote

the vector of random variables (we abuse notation slightly, let ajs include Ȳj−2,sφjs when

j ≥ 2, to simplify notation),

ajs =

(a0(v1s, s), . . . , a0(vNs,s, s))
T , if j = 1;

(a(y1,j−1,s,v1s, j, s), . . . , a(yNs,j−1,s,vNs,s, j, s))
T + Ȳj−2,sφjs, if j ≥ 2,

where vis is the vector of auxiliary covariates for subject i in pattern s. The vector ajs is

the mean of yjs. Let a0 and a denote the vector of random variables,

a0 =
(
aT12,a

T
13, . . . ,a

T
1J

)T
a =

(
aT22,a

T
23,a

T
33, . . . ,a

T
2J , . . . ,a

T
JJ

)T
.

Denote by

Σy0 = diag
(
σ2
12IN2 , . . . , σ

2
1JINJ

)
,

Σy = diag
(
σ2
22IN2 , σ

2
23IN3 , σ

2
33IN3 , . . . , σ

2
2JINJ , . . . , σ

2
JJINJ

)
.

Thus, the likelihoods for the initial responses yvec0 and subsequent responses yvec

are

yvec0 | a0,Σy0 ∼ N(a0,Σy0),

yvec | a,Σy ∼ N(a,Σy).

Next, we consider the priors for a0 and a. Denote by

θ0 = (β0, b0),

θ = (β, b,ψ,φ),

where φ = (φ33;φ34,φ44; . . . ;φ3J , . . . ,φJJ).
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Let D0 and D denote the exponential distance matrices for a0 and a (abuse notation

slightly, we use D0 and D to denote the matrices and D0(a; b) and D(a; b) to denote the

distance functions),

D0 = D0(Vvec0, svec0;Vvec0, svec0),

D = D(ylag, Vvec, jvec, svec;ylag, Vvec, jvec, svec),

with

[D0]ijs,i′j′s′ = D0(vis, s;vi′s′ , s
′),

[D]ijs,i′j′s′ = D(yi,j−1,s,vis, j, s; yi′,j′−1,s′ ,vi′s′ , j
′, s′).

Here Vvec0 is the matrix of auxiliary covariates corresponding to yvec0, svec0 is the vector of

patterns corresponding to yvec0, ylag is the vector of lag-1 responses corresponding to yvec,

Vvec is the matrix of auxiliary covariates corresponding to yvec, and jvec and svec are the

vectors of times and patterns corresponding to yvec.

We have

a0 | θ0, κ20 ∼ N(Xθ0θ0, κ
2
0D0 + κ̃20I),

a | θ, κ2 ∼ N(Xθθ, κ
2D + κ̃2I),

where Xθ0 and Xθ are the design matrices corresponding to Equation (4).

Denote by C0 = κ20D0 + κ̃20I and C = κ2D + κ̃2I. Integrating out a0 and a, the

(marginal) likelihoods become

yvec0 | θ0,Σy0 , κ
2
0 ∼ N(Xθ0θ0,Σy0 + C0),

yvec | θ,Σy, κ
2 ∼ N(Xθθ,Σy + C).

Update a0 and a. It is not unusual to integrate out a0 and a for posterior inference

on Gaussian process. However, we find that including a0 and a in the posterior inference

would improve the mixing of the Markov chain. Therefore, we update a0 and a at each

iteration.

1. The likelihood and prior for a0 are

yvec0 | a0,Σy0 ∼ N(a0,Σy0),

a0 | θ0, κ20 ∼ N(Xθ0θ0, C0),
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which lead to the posterior

a0 | θ0, κ20,Σy0 ,yvec0 ∼ N(a∗0,Σ
∗
a0

), where

Σ∗a0 = [C−10 + Σ−1y0 ]−1,

a∗0 = Σ∗a0 [C
−1
0 Xθ0θ0 + Σ−1y0 yvec0].

2. The likelihood and prior for a are

yvec | a,Σy ∼ N(a,Σy),

a | θ, κ2 ∼ N(Xθθ, C),

which lead to the posterior

a | θ, κ2,Σy,yvec ∼ N(a∗,Σ∗a), where

Σ∗a = [C−1 + Σ−1y ]−1,

a∗ = Σ∗a[C
−1Xθθ + Σ−1y yvec].

Update κ20 and κ2. 1. The likelihood and prior for κ20 are

a0 | θ0, κ20 ∼ N(Xθ0θ0, κ
2
0D0 + κ̃20I),

κ20 ∼ IG(λκ01 , λ
κ0
2 ).

The posterior for κ20 is

p(κ20 | θ0,a0) ∝ pN(a0 | Xθ0θ0, κ
2
0D0 + κ̃20I) · pIG(κ20 | λ

κ0
1 , λ

κ0
2 ),

where pN(x | µ,Σ) represents (multivariate) normal density at x with mean µ and co-

variance matrix Σ, and pIG(x | a, b) represents inverse gamma density at x with shape

parameter a and rate parameter b. We use Metropolis-Hastings step to update κ20.

2. The likelihood and prior for κ2 are

a | θ, κ2 ∼ N(Xθθ, κ
2D + κ̃2I),

κ2 ∼ IG(λκ1 , λ
κ
2).

The posterior for κ2 is

p(κ2 | θ,a) ∝ pN(a | Xθθ, κ
2D + κ̃2I) · pIG(κ2 | λκ1 , λκ2).

We use Metropolis-Hastings step to update κ2.
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Update Σy0 and Σy. The likelihood and prior for σ2
js are

yjs | ajs, σ2
js ∼ N(ajs, σ

2
jsI),

σ2
js | λσ, νσ ∼ IG(λσ, λσνσ).

The posterior for σ2
js is

σ2
js | λσ, νσ,ajs,yjs ∼ IG

(
λσ +

Ns

2
, λσνσ +

RSSjs
2

)
,

where RSSjs = ‖yjs − ajs‖22.

There are two hyperparameters related to σ2
js: λσ and νσ. Their conditional posteriors

are

p(λσ | {σ2
js}, νσ) ∝ (νσλσ)(2+J)(J−1)λσ/2

Γ(λσ)(2+J)(J−1)/2

∏
j,s

(
σ2
js

)−(λσ−1) ·
exp

(
−
∑
j,s

νσ
σ2
js

λσ

)
exp

(
− 1

λσ − 2

)
,

and

νσ | {σ2
js}, λσ ∼ Gamma

(
(2 + J)(J − 1)

2
λσ + 1,

∑
j,s

λσ
σ2
js

+ 1

)
.

We use Metropolis-Hastings step to update λσ.

Update θ0 and θ. We integrate out a0 and a to update θ0 and θ. The likelihoods

become

yvec0 | θ0,Σy0 , κ
2
0 ∼ N(Xθ0θ0,Σy0 + C0),

yvec | θ,Σy, κ
2 ∼ N(Xθθ,Σy + C).

1. For θ0, the prior is

θ0 | β̃0, σ
2
β0
, ρ0, b̃0, σ

2
b0
, γb0 ∼ N(θ̃0,Σθ0),

where θ̃0 = (Xββ̃0,1b̃0), and

Σθ = diag
(
σ2
β0

Σβ(ρ0), σ
2
b0

(I − γb0Wb0)
−1Nb0

)
.
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Thus, the posterior of θ0 is

θ0 | yvec0, . . . ∼ N(θ∗0,Σ
∗
θ0

), where

Σ∗θ0 =
[
Σ−1θ0 +XT

θ0
(Σy0 + C0)

−1Xθ0

]−1
,

θ∗0 = Σ∗θ0

[
Σ−1θ0 θ̃0 +XT

θ0
(Σy0 + C0)

−1yvec0

]
.

2. For θ, the prior is

θ | β̃, σ2
β, ρ, b̃, σ

2
b , γb, ψ̃, σ

2
ψ, γψ, σ

2
φ ∼ N(θ̃,Σθ),

where θ̃ = (Xββ̃,1b̃,1ψ̃,0), and

Σθ = diag
(
σ2
βΣβ(ρ), σ2

b (I − γbWb)
−1Nb, σ2

ψ(I − γψWψ)−1Nψ, σ2
φI
)
.

Thus, the posterior of θ is

θ | yvec, . . . ∼ N(θ∗,Σ∗θ), where

Σ∗θ =
[
Σ−1θ +XT

θ (Σy + C)−1Xθ

]−1
,

θ∗ = Σ∗θ

[
Σ−1θ θ̃ +XT

θ (Σy + C)−1yvec

]
.

Hyperparameters related to β and β0. There are three hyperparameters related to

β: β̃, σ2
β and ρ. The conditional posteriors are as follows.

1. Conditional posterior of β̃:

β̃ | β, σ2
β, ρ ∼ N(β̃∗,Σ∗

β̃
), where

Σ∗
β̃

=

[
1

δ2β
I +

1

σ2
β

X ′βΣβ(ρ)−1Xβ

]−1
,

β̃∗ = Σ∗
β̃

[
1

σ2
β

X ′βΣβ(ρ)−1β

]
.

2. Conditional posterior of σ2
β:

σ2
β | β, β̃, ρ ∼ IG

[
λβ1 +

(J − 1)Q

2
, λβ2 +

1

2
(β −Xββ̃)′Σβ(ρ)−1(β −Xββ̃)

]
.
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3. Conditional posterior of ρ:

p(ρ | β, β̃, σ2
β)

∝ det[σ−2β Σβ(ρ)−1]1/2 exp

[
− 1

2σ2
β

(β −Xββ̃)′Σβ(ρ)−1(β −Xββ̃)

]

∝ (1− ρ2)Q/2 exp

[
− 1

2σ2
β

(
ρ2Rβ1 − 2ρRβ2

)]
,

where

Rβ1 =
J−1∑
s=3

‖βs − β̃‖22, Rβ2 =
J∑
s=3

(βs − β̃)′(βs−1 − β̃).

We use the following properties to derive the conditional posterior of ρ. The inverse and

determinant of Σβ(ρ) are

Σβ(ρ)−1 =



I −ρI

−ρI (1 + ρ2)I −ρI

−ρI (1 + ρ2)I −ρI

−ρI . . . . . .

. . . (1 + ρ2)I −ρI

−ρI I


,

and det[Σβ(ρ)−1] = (1 − ρ2)Q, respectively. To update β̃ and σ2
β, we use regular Gibbs

steps. To update ρ, given {β, β̃, σ2
β} we can easily evaluate its posterior on the [0, 1] grid,

and sample from it.

Similarly, there are three hyperparameters related to β0: β̃0, σ
2
β0

and ρ0. Their condi-

tional posteriors have exactly the same form as those for β̃, σ2
β and ρ.

Hyperparameters related to b and b0. There are three hyperparameters related to

b: b̃, σ2
b and γb. The conditional posteriors are as follows.

1. Conditional posterior of b̃:

b̃ | b, σ2
b , γb ∼ N(b̃∗, δ∗2

b̃
), where

δ∗2
b̃

=

[
1

δ2b
+

1

σ2
b

1TN−1b (I − γbWb)1

]−1
,

b̃∗ = δ∗2
b̃

[
1

σ2
b

1TN−1b (I − γbWb)b

]
.
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2. Conditional posterior of σ2
b :

σ2
b | b, b̃, γb ∼ IG

[
λb1 +

dim(b)

2
, λb2 +

1

2
(b− 1b̃)′N−1b (I − γbWb)(b− 1b̃)

]
.

3. Conditional posterior of γb:

p(γb | b, b̃, σ2
b ) ∝ det(I − γbWb)

1/2 · exp

[
γb ·

1

2σ2
b

(b− 1b̃)′N−1b Wb(b− 1b̃)

]
.

To update b̃ and σ2
b , we use regular Gibbs steps. To update γb, given {b, b̃, σ2

b} we can easily

evaluate its posterior on the [0, 1] grid, and sample from it. To facilitate computation, we

can calculate det(I−γbWb)
1/2 on the [0, 1] grid, save the values and use it at each iteration.

Similarly, there are three hyperparameters related to b0: b̃0, σ
2
b0

and γb0 . Their condi-

tional posteriors have exactly the same form as those for b̃, σ2
b and γb.

Hyperparameters related to ψ. There are three hyperparameters related to ψ: ψ̃,

σ2
ψ and γψ. The conditional posteriors are as follows.

1. Conditional posterior of ψ̃:

ψ̃ | ψ, σ2
ψ, γψ ∼ N(ψ̃∗, δ∗2

ψ̃
), where

δ∗2
ψ̃

=

[
1

δ2ψ
+

1

σ2
ψ

1′N−1ψ (I − γψWψ)1

]−1
,

ψ̃∗ = δ∗2
ψ̃

[
1

δ2ψ
· 1 +

1

σ2
ψ

1′N−1ψ (I − γψWψ)ψ

]
.

2. Conditional posterior of σ2
ψ:

σ2
ψ | ψ, ψ̃, γψ ∼ IG

[
λψ1 +

dim(ψ)

2
, λψ2 +

1

2
(ψ − 1ψ̃)′N−1ψ (I − γψWψ)(ψ − 1ψ̃)

]
.

3. Conditional posterior of γψ:

p(γψ | ψ, ψ̃, σ2
ψ) ∝ det(I − γψWψ)1/2 · exp

[
γψ ·

1

2σ2
ψ

(ψ − 1ψ̃)′N−1ψ Wψ(ψ − 1ψ̃)

]
.

Hyperparameters related to φ. There is one hyperparameter related to φ: σ2
φ. The

conditional posterior is

σ2
φ | φ ∼ IG

[
λφ1 +

1

2
dim(φ), λφ2 +

1

2
φTφ

]
.
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Update intermittent missing responses. The focus of our method is dealing with

monotone missing data. Sometimes there are (typically few) intermittent missing responses,

and we impute it under the partial ignorability assumption (Harel and Schafer, 2009).

Suppose yijs is missing. Its conditional distribution is

p (yijs | y−ijs,π) ∝ p (yvec0,yvec | π) ,

We use a Metropolis-Hastings step to update yijs. We use a symmetric normal proposal

distribution, yproijs ∼ N
(
ycurijs , 0.5× sd(yvec0,yvec)

)
.

A.4 G-computation Implementation Details

The steps for conducting the G-computation for our setting are summarized in Algorithm

A.1.

Algorithm A.1 G-computation

1: for l in 1, . . . , L do

2: for m in 1, . . . ,M do

3: 1. Draw V ∗ = v∗ ∼ p(v∗ | η(l))

4: 2. Draw S∗ = s∗ ∼ p(s∗ | v∗,ϕ(l))

5: 3. Draw Ȳ ∗s = ȳ∗s ∼ p(ȳ∗s | s∗,v∗,π(l))

6: 4. Draw Ỹ ∗s = ỹ∗s ∼ p(ỹ∗s | ȳ∗s , s∗,v∗,ω
(l)
E )

7: 5. Set Y ∗(m,l) = (Ȳ ∗s , Ỹ
∗
s )

8: end for

9: end for

10: return (1/ML) ·
∑

m,l t
[
Y ∗(m,l)

]
Next, we describe in detail how to draw the pseudo responses using Gaussian process

prediction rule, i.e. steps 3 and 4 in Algorithm A.1. We generally use a superscript ∗ to

denote the pseudo subject and response.

Observed response. To draw a vector of pseudo observed responses Ȳ ∗s = ȳ∗s from

p(ȳ∗s | s∗,v∗,π), we do the following.
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1. Draw y∗1 from p(y∗1 | s∗,v∗,π). Consider the joint distribution of a∗1s∗ = a0(v
∗, s∗) and

the training data points yvec0, yvec0

a∗1s∗

 ∼ N

 Xθ0θ0

µ∗1s∗

 ,

 Σy0 + C0 C∗1s∗

C∗T1s∗ C∗∗1s∗

 ,
where

µ∗1s∗ = µ0(v
∗, s∗),

C∗1s∗ = C0(Vvec0, svec0;v
∗, s∗),

C∗∗1s∗ = C0(v
∗, s∗;v∗, s∗).

The predictive distribution for a∗1s∗ is thus

a∗1s∗ | yvec0,π ∼ N
[
µ∗1s∗ + C∗T1s∗(Σy0 + C0)

−1(yvec0 −Xθ0θ0),

C∗∗1s∗ − C∗T1s∗(Σy0 + C0)
−1C∗1s∗

]
,

and we can draw

y∗1 | a∗1s∗ ∼ N(a∗1s∗ , σ
2
1s∗).

Integrating out a∗1s∗ , the above two steps simplify to

y∗1 | yvec0,π ∼ N(µ̌∗1s∗ , σ̌
2
1s∗), where

µ̌∗1s∗ = µ∗1s∗ + C∗T1s∗(Σy0 + C0)
−1(yvec0 −Xθ0θ0),

σ̌2
1s∗ = C∗∗1s∗ − C∗T1s∗(Σy0 + C0)

−1C∗1s∗ + σ2
1s∗ .

2. Draw y∗j from p(y∗j | ȳ∗j−1, s∗,v∗,π), (1 < j ≤ s∗). The joint distribution of a∗js∗ =

a(y∗j−1,v
∗, j, s∗) + ȳ∗Tj−2φjs∗ and the training data points yvec is yvec

a∗js∗

 ∼ N

 Xθθ

µ∗js∗ + ȳ∗Tj−2φjs∗

 ,

 Σy + C C∗js∗

C∗Tjs∗ C∗∗js∗

 ,
where

µ∗js∗ = µ(y∗j−1,v
∗, j, s∗),

C∗js∗ = C(ylag, Vvec, jvec, svec; y
∗
j−1,v

∗, j, s∗),

C∗∗js∗ = C(y∗j−1,v
∗, j, s∗; y∗j−1,v

∗, j, s∗).
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The predictive distribution for a∗js∗ is thus

a∗js∗ | ȳ∗j−1,yvec,π ∼ N
[
µ∗js∗ + ȳ∗Tj−2φjs∗ + C∗Tjs∗(Σy + C)−1(yvec −Xθθ),

C∗∗js∗ − C∗Tjs∗(Σy + C)−1C∗js∗
]
,

and we can draw

y∗j | a∗js∗ ∼ N(a∗js∗ , σ
2
js∗).

Integrating out a∗js∗ , the above two steps simplify to

y∗j | ȳ∗j−1,yvec,π ∼ N(µ̌∗js∗ , σ̌
2
js∗), where

µ̌∗js∗ = µ∗js∗ + ȳ∗Tj−2φjs∗ + C∗Tjs∗(Σy + C)−1(yvec −Xθθ),

σ̌2
js∗ = C∗∗js∗ − C∗Tjs∗(Σy + C)−1C∗js∗ + σ2

js∗ .

Missing response. To draw a pseudo response Y ∗j = y∗j from the extrapolation distri-

bution p(y∗j | ȳ∗j−1, s∗,v∗,ω) (j > s∗), do the following.

(I) Under MAR,

p(y∗j | ȳ∗j−1,v∗, S = s∗,ω) = p(y∗j | ȳ∗j−1,v∗, S ≥ j,ω)

=
J∑
k=j

αkjp(y
∗
j | ȳ∗j−1,v∗, S = k,ω), (1)

where

αkj = αkj(ȳ
∗
j−1,v

∗) = p(S = k | ȳ∗j−1,v∗, S ≥ j)

=
p(ȳ∗j−1 | v∗, S = k) p(S = k | v∗, S ≥ j)∑J
k=j p(ȳ

∗
j−1 | v∗, S = k) p(S = k | v∗, S ≥ j)

, k = j, . . . , J

The above expression can be calculated by

p(ȳ∗j−1 | v∗, S = k) = pk(y
∗
1 | v∗) ·

j−1∏
l=2

pk(y
∗
l | ȳ∗l−1,v∗)

where

pk(y
∗
1 | v∗) = pN

(
y∗1 | µ̌∗1k, σ̌2

1k

)
,

pk(y
∗
l | ȳ∗l−1,v∗) = pN

(
y∗l | µ̌∗lk, σ̌2

lk

)
,
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and

p(S = k | v∗, S ≥ j)

= p(S = k | v∗, S ≥ k) ·
k−1∏
l=j

p(S ≥ l + 1 | v∗, S ≥ l)

= p(S = k | v∗, S ≥ k) ·
k−1∏
l=j

[1− p(S = l | v∗, S ≥ l)] .

To sample from (1), after calculating (αjj, . . . , αJj), we can draw K = k with probability

αkj, and sample Y ∗j = y∗j from pk(y
∗
j | ȳ∗j−1,v∗,ω).

(II) Under NFD.

(II-1) For j = s∗ + 1,

[Yj | Ȳj−1, S = j − 1,V ,ω]
d
=
[
Yj + τj | Ȳj−1, S ≥ j,V ,ω

]
.

We first sample from p≥j(y
∗
j | ȳ∗j−1,v∗,ω). Then, we apply the location shift (9) with

τj(ȳ
∗
j−1,v

∗) = τ̃ ·∆j(ȳ
∗
j−1,v

∗),

where ∆j(ȳ
∗
j−1,v

∗) is chosen to be the standard deviation of pj−1(y
∗
j | ȳ∗j−1,v∗,ω) under

MAR, i.e. p≥j(y
∗
j | ȳ∗j−1,v∗,ω). We have

p≥j(y
∗
j | ȳ∗j−1,v∗,ω) =

J∑
k=j

αkjN(µ̌∗jk, σ̌
2
jk).

The standard deviation of this normal mixture is given by

∆j(ȳ
∗
j−1,v

∗) =

√√√√ J∑
k=j

αkjσ̌2
jk +

J∑
k=j

αkjµ̌∗2jk −

(
J∑
k=j

αkjµ̌∗jk

)2

.

(II-2) For j > s∗ + 1,

p(y∗j | ȳ∗j−1,v∗, S = s∗,ω) = p(y∗j | ȳ∗j−1,v∗, S ≥ j − 1,ω)

=
J∑

k=j−1

αk,j−1p(y
∗
j | ȳ∗j−1,v∗, S = k,ω), (2)

15



where

αk,j−1 = αk,j−1(ȳ
∗
j−1,v

∗) = p(S = k | ȳ∗j−1,v∗, S ≥ j − 1)

=
p(ȳ∗j−1 | v∗, S = k) p(S = k | v∗, S ≥ j − 1)∑J

k=j−1 p(ȳ
∗
j−1 | v∗, S = k) p(S = k | v∗, S ≥ j − 1)

, k = j − 1, . . . , J.

To sample from (2), after calculating (αj−1,j−1, . . . , αJ,j−1), we can draw K = k with

probability αk,j−1.

(II-2a) If k = j − 1, draw again K ′ = k′ with probability αk′,j−1/(1 − αj−1,j−1) for k′ =

j, . . . , J . Then, sample Y ∗j = y∗j from pk′(y
∗
j | ȳ∗j−1,v∗,ω), and apply the location shift (9).

(II-2b) If k ∈ {j, . . . , J}, sample Y ∗j = y∗j from pk(y
∗
j | ȳ∗j−1,v∗,ω).

The steps for sampling the pseudo response Y ∗ = y∗ from p(y∗ | s∗,v∗,ω) are summa-

rized in Algorithm A.2.
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Algorithm A.2 Draw Y ∗ = y∗ from p(y∗ | s∗,v∗,ω)

1: Draw Y ∗1 = y∗1 ∼ N(µ̌∗1s∗ , σ̌
2
1s∗)

2: for j in 2, . . . , s∗ do

3: Draw Y ∗j = y∗j ∼ N(µ̌∗js∗ , σ̌
2
js∗)

4: end for

5: if MAR then

6: for j in s∗ + 1, . . . , J do

7: Calculate αj(ȳ
∗
j−1,v

∗) = (αjj, . . . , αJj)

8: Draw K = k ∼ Categorical[(j, . . . , J);αj]

9: Draw y∗j ∼ N(µ̌∗jk, σ̌
2
jk)

10: end for

11: else if NFD then

12: Set j = s∗ + 1

13: Calculate αj(ȳ
∗
j−1,v

∗) = (αjj, . . . , αJj)

14: Draw K = k ∼ Categorical[(j, . . . , J);αj]

15: Calculate τj(ȳ
∗
j−1,v

∗) = τ̃ ·∆j(ȳ
∗
j−1,v

∗)

16: Draw y∗j ∼ N(µ̌∗jk + τj, σ̌
2
jk)

17: for j in s∗ + 2, . . . , J do

18: Calculate αj−1(ȳ
∗
j−1,v

∗) = (αj−1,j−1, . . . , αJ,j−1)

19: Draw K = k ∼ Categorical[(j − 1, . . . , J);αj−1]

20: if k = j − 1 then

21: Calculate α′j = (αj,j−1, . . . , αJ,j−1)/(1− αj−1,j−1)

22: Draw K ′ = k′ ∼ Categorical[(j, . . . , J);α′j]

23: Calculate τj(ȳ
∗
j−1,v

∗) = τ̃ ·∆j(ȳ
∗
j−1,v

∗)

24: Draw y∗j ∼ N(µ̌∗jk′ + τj, σ̌
2
jk′)

25: else

26: Draw y∗j ∼ N(µ̌∗jk, σ̌
2
jk).

27: end if

28: end for

29: end if
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A.5 Simulation Details

Prior and hyper-prior parameters. We set the prior and hyper-prior parameters at

standard noninformative choices. We generally use N(0, (
√

30)2) and IG(1, 1) as nonin-

formative normal and inverse-gamma priors, respectively. Since we have standardized the

covariates and responses, it is thought unlikely that the regression coefficients would have

a scale greater than
√

30 ≈ 5.5. Table A.2 shows the exact values. We set κ20 ∼ IG(10, 1)

and κ2 ∼ IG(10, 1) to shrink the semiparametric model towards a simple linear regression

model. We also set λφ1 = 30 and λφ2 = 1 to shrink φjs towards 0. Since higher order

lag responses are highly correlated with lag-1 responses, shrinking φjs towards 0 helps us

correctly identify the effect of lag-1 responses.

λκ01 10 λλσ1 1 δ2β0 30 δ2b0 30 δ2ψ 30

λκ02 1 λλσ2 1 λβ01 1 λb01 1 λψ1 1

λκ1 10 λνσ1 1 λβ02 1 λb02 1 λψ2 1

λκ2 1 λνσ2 1 δ2β 30 δ2b 30 λφ1 30

λβ1 1 λb1 1 λφ2 1

λβ2 1 λb2 1 δη 0.1

Table A.2: Choices of hyperparameters in the observed data model. These hyperparameters

are used for simulations and real data analysis.

Scenario 1. The covariance matrix for generating V is

Σvv =


1.0 0.52 −0.22 0.07

0.52 1.0 −0.23 −0.02

−0.22 −0.23 1.0 0.45

0.07 −0.02 0.45 1.0

 ,

which is the correlation matrix of the subjects’ numerical auxiliary covariates from the

schizophrenia clinical trial dataset.

The parameters for generating S are

ζ = (−4.346,−2.193,−2.606,−2.678)T ,
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where ζs corresponds to the (s− 1)-th element (s = 2, . . . , 5), and

ξ =


−1.057 0.328 −0.121 0.273

−0.826 0.128 0.525 −0.781

−0.487 0.479 0.534 −0.480

0.642 0.129 0.448 0.122

 ,

where ξs corresponds to the (s− 1)-th column (s = 2, . . . , 5). These parameters come from

fitting the sequential logistic regression model to the test drug arm of the schizophrenia

clinical trial dataset and taking posterior mean of each parameter.

The parameters for generating ȲS are

{σ2
js} =



0.232 0.221

0.365 0.243 0.196

0.403 0.222 0.228 0.941

0.438 0.228 0.225 0.213 0.284

0.335 0.192 0.265 0.140 0.167 0.160


,

where σ2
js corresponds to the element in the (s− 1)-th row and j-th column;

(b0, b) =



0.069 −0.191

0.507 0.219 0.302

0.393 0.060 −0.022 0.399

0.798 0.048 −0.051 0.051 0.362

0.384 −0.107 −0.250 −0.367 −0.250 −0.321


,

where bjs corresponds to the element in the (s− 1)-th row and j-th column;

β0 =


−0.046 0.174 −0.005 0.024 0.230

−0.200 −0.099 −0.124 −0.451 −0.163

−0.315 −0.191 −0.104 0.140 0.032

−0.053 0.065 0.003 −0.044 −0.092

 ,
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where β0s corresponds to the (s− 1)-th column;

β =


−0.080 −0.117 −0.118 0.010 0.066

−0.044 −0.113 0.023 −0.035 −0.030

−0.109 −0.020 −0.014 −0.022 0.056

0.170 0.127 0.166 −0.060 0.002

 ,

where βs corresponds to the (s− 1)-th column;

(φ1) =



1.078

1.088 0.938

0.830 0.893 0.830

0.637 0.877 0.907 1.065

0.881 0.871 0.842 0.929 0.943


,

where φ1js corresponds to the element in the (s− 1)-th row and (j − 1)-th column;

(φ2) =


−0.045

0.040 −0.025

0.021 0.022 0.035

0.089 0.129 0.019 −0.020

 ,

where φ2js corresponds to the element in the (s− 2)-th row and (j − 2)-th column; and

(φ3) =



0.011

0.037

 0.074

0.037



0.078

 −0.027

−0.086




0.021

0.010

−0.009




,

where φ3js corresponds to the element in the (s− 3)-th row and (j − 3)-th column. These

parameters come from fitting the linear regression model to the test drug arm of the

schizophrenia clinical trial dataset and taking posterior mean of each parameter.
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Scenario 2. We use the same choices of b0, b, φ1, φ2 and φ3 as in Scenario 1. We set

Σvv =


1.0 0.52 −0.22

0.52 1.0 −0.23

−0.22 −0.23 1.0

 ,

i.e. the upper left 3× 3 submatrix of Σvv in Scenario 1. We change {σ2
js}, ζ, ξ, β0 and β

to

{σ2
js} =



0.155 0.101

0.217 0.133 0.112

0.099 0.082 0.101 0.115

0.141 0.127 0.169 0.132 0.107

0.106 0.119 0.095 0.081 0.266 0.174


,

where σ2
js corresponds to the element in the (s− 1)-th row and j-th column;

ζ = (−3.0,−2.1,−1.6,−1.3)T ,

where ζs corresponds to the (s− 1)-th element (s = 2, . . . , 5), and

ξ =



−1.057 0.328 −0.121 0.273

−0.826 0.128 0.525 −0.781

−0.487 0.479 0.534 −0.480

−0.528 0.164 −0.061 0.136

−0.413 0.064 0.263 −0.390

−0.244 0.239 0.267 −0.240

0.321 0.064 0.224 0.061

−0.528 0.164 −0.061 0.136

−0.413 0.064 0.263 −0.390



,
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where ξs corresponds to the (s− 1)-th column (s = 2, . . . , 5).

β0 =



−0.530 −0.508 −0.561 −0.507 −0.525

−0.366 −0.377 −0.421 −0.417 −0.386

0.351 0.309 0.323 0.318 0.346

0.283 0.291 0.282 0.277 0.275

−0.316 −0.321 −0.319 −0.319 −0.316

0.288 0.285 0.293 0.288 0.289

0.033 0.030 0.033 0.020 0.033

−0.083 −0.087 −0.094 −0.082 −0.092

0.124 0.125 0.115 0.120 0.116



,

where β0s corresponds to the (s− 1)-th column;

β =



−0.395 −0.387 −0.427 −0.434 −0.443

0.320 0.337 0.339 0.317 0.338

0.331 0.349 0.400 0.385 0.356

0.317 0.315 0.309 0.313 0.310

0.354 0.355 0.342 0.354 0.349

−0.301 −0.299 −0.303 −0.306 −0.306

−0.082 −0.082 −0.073 −0.068 −0.079

−0.077 −0.088 −0.082 −0.085 −0.081

−0.129 −0.126 −0.130 −0.133 −0.128

0.025 0.022 0.024 0.022 0.023

−0.021 −0.020 −0.020 −0.022 −0.024

−0.015 −0.015 −0.014 −0.015 −0.019

0.004 0.003 0.004 0.003 0.002



,

where βs corresponds to the (s− 1)-th column.

Scenario 3. The parameter for generating K is

π = (0.119, 0.579, 0.001, 0.115, 0.186),
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which is taken from Linero and Daniels (2015) by fitting the mixture model to the active

control arm of the schizophrenia clinical trial dataset.

The parameters for the joint distribution of Y and V are specified and generated as

follows. Within mixture component k, the joint distribution of Y and V is Y

V

 | K = k ∼ N
[
µ(k),Ω(k)

]
,

where

µ(k) =

 µ
(k)
y

0

 ,

Ω(k) ∼ W−1
(

(ν − J −Q− 1)Ω
(k)
0 , ν

)
,

Ω
(k)
0 =

 Σ
(k)
yy Σ

(k)
yv

Σ
(k)
vy Σvv

 .

Here µ
(k)
y and Ω

(k)
0 correspond to a linear model of (Y | V ), where

V | K = k ∼ N(0,Σvv),

Y1 | V , K = k ∼ N
(
b
(k)
1 + V Tβ

(k)
0 , σ

2(k)
1

)
,

Yj | Ȳj−1,V , K = k ∼ N
(
b
(k)
j + V Tβ(k) + φ

(k)
j Yj−1, σ

2(k)
j

)
, j = 2, . . . , J.

Let b(k) = (b
(k)
1 , . . . , b

(k)
J )T , B(k) = (β

(k)
0 ,β(k), . . . ,β(k)), Σ

(k)
0 = diag(σ

2(k)
1 , . . . , σ

2(k)
J ),

Φ(k) =



0 0 0 · · · 0

φ
(k)
2 0 0 · · · 0

0 φ
(k)
3 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 φ
(k)
J 0


,

and Φ̇(k) =
(
I − Φ(k)

)−1
. We have

µ(k)
y = Φ̇(k)b(k),

Σ(k)
yy = Φ̇(k)B(k)TΣvvB

(k)Φ̇(k)T + Φ̇(k)Σ
(k)
0 Φ̇(k)T ,

Σ(k)
yv = Φ̇(k)B(k)TΣvv.
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We use the same Σvv as in Scenario 2. The parameters {µ(k)
y } and Σ

(k)
0 are taken from

Linero and Daniels (2015) (after standardization), which are generated by fitting the model

to the active control arm of the schizophrenia clinical trial dataset. In particular,

{µ(k)
y } =



0.715 0.559 −0.649 −0.085 0.677

0.581 0.406 −1.368 −0.207 0.799

0.329 0.175 −1.404 −0.851 0.944

0.319 −0.217 −1.650 −1.181 1.276

0.889 −0.473 −1.765 −1.363 0.483

−0.664 −0.593 −3.195 −1.562 1.081


,

where µ
(k)
y corresponds to the k-th column. Then, we add the effects of auxiliary covariates

by randomly generating B(k) and Φ(k) (values not shown). Based on B(k), Φ(k), Σvv and

Σ
(k)
0 we calculate Ω

(k)
0 . Finally, we generate Ω(k) ∼ W−1

(
(ν − J −Q− 1)Ω

(k)
0 , ν

)
and get

Ω(1) =



0.9 1.3 1.7 1.9 2.3 2.6 −1.0 −0.4 0.4

1.3 2.2 2.9 3.4 4.2 4.9 −1.6 −0.4 0.9

1.7 2.9 4.1 4.8 5.9 7.0 −2.1 −0.4 1.4

1.9 3.4 4.8 5.8 7.1 8.3 −2.4 −0.3 1.7

2.3 4.2 5.9 7.1 8.8 10.4 −3.0 −0.4 2.2

2.6 4.9 7.0 8.3 10.4 12.2 −3.5 −0.4 2.6

−1.0 −1.6 −2.1 −2.4 −3.0 −3.5 1.7 0.5 −0.2

−0.4 −0.4 −0.4 −0.3 −0.4 −0.4 0.5 0.7 −0.1

0.4 0.9 1.4 1.7 2.2 2.6 −0.2 −0.1 1.2



,
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Ω(2) =



0.2 0.3 0.3 0.4 0.5 0.6 −0.2 −0.3 0.3

0.3 0.6 0.8 1.0 1.3 1.6 −0.2 −0.3 0.7

0.3 0.8 1.2 1.5 1.9 2.4 −0.3 −0.2 1.0

0.4 1.0 1.5 2.0 2.5 3.1 −0.4 −0.1 1.2

0.5 1.3 1.9 2.5 3.2 4.0 −0.4 −0.2 1.6

0.6 1.6 2.4 3.1 4.0 5.0 −0.4 −0.2 2.1

−0.2 −0.2 −0.3 −0.4 −0.4 −0.4 0.5 0.1 0.1

−0.3 −0.3 −0.2 −0.1 −0.2 −0.2 0.1 0.9 −0.4

0.3 0.7 1.0 1.2 1.6 2.1 0.1 −0.4 1.2



,

Ω(3) =



1.2 1.3 1.3 1.3 1.5 1.6 −0.8 −0.8 0.4

1.3 1.5 1.6 1.7 1.9 2.1 −0.9 −0.7 0.6

1.3 1.6 1.7 1.9 2.2 2.4 −0.9 −0.5 0.7

1.3 1.7 1.9 2.1 2.4 2.7 −0.9 −0.4 0.8

1.5 1.9 2.2 2.4 2.9 3.3 −1.1 −0.4 0.9

1.6 2.1 2.4 2.7 3.3 3.7 −1.2 −0.3 1.1

−0.8 −0.9 −0.9 −0.9 −1.1 −1.2 0.8 0.5 −0.1

−0.8 −0.7 −0.5 −0.4 −0.4 −0.3 0.5 0.9 −0.1

0.4 0.6 0.7 0.8 0.9 1.1 −0.1 −0.1 0.6



,

Ω(4) =



1.0 1.3 1.5 1.7 2.0 2.2 −0.9 −0.7 0.5

1.3 2.0 2.4 2.7 3.2 3.6 −1.4 −0.7 0.6

1.5 2.4 2.9 3.4 4.0 4.5 −1.7 −0.7 0.8

1.7 2.7 3.4 4.0 4.7 5.4 −2.0 −0.7 0.9

2.0 3.2 4.0 4.7 5.6 6.3 −2.3 −0.7 1.0

2.2 3.6 4.5 5.4 6.3 7.3 −2.6 −0.7 1.2

−0.9 −1.4 −1.7 −2.0 −2.3 −2.6 1.3 0.5 −0.1

−0.7 −0.7 −0.7 −0.7 −0.7 −0.7 0.5 0.9 −0.2

0.5 0.6 0.8 0.9 1.0 1.2 −0.1 −0.2 0.7



,
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Ω(5) =



0.8 1.0 1.3 1.5 1.7 2.0 −0.8 −0.4 0.5

1.0 1.7 2.2 2.7 3.2 3.8 −1.4 −0.3 0.7

1.3 2.2 2.9 3.7 4.3 5.1 −1.8 −0.2 1.0

1.5 2.7 3.7 4.8 5.7 6.7 −2.2 −0.1 1.2

1.7 3.2 4.3 5.7 6.8 8.0 −2.6 −0.1 1.4

2.0 3.8 5.1 6.7 8.0 9.5 −3.1 −0.0 1.7

−0.8 −1.4 −1.8 −2.2 −2.6 −3.1 1.4 0.3 −0.3

−0.4 −0.3 −0.2 −0.1 −0.1 −0.0 0.3 0.5 −0.1

0.5 0.7 1.0 1.2 1.4 1.7 −0.3 −0.1 0.7



,

The parameters for generating S are

ζ = (−2.61,−2.75,−2.08,−1.52)T ,

where ζs corresponds to the (s− 1)-th element (s = 2, . . . , 5),

ψ = (−0.96, 0.66, 0.78, 0.54)T ,

where ψs corresponds to the (s− 1)-th element (s = 2, . . . , 5), and

ξ =


−1.057 0.328 −0.121 0.273

−0.826 0.128 0.525 −0.781

−0.487 0.479 0.534 −0.480

 ,

where ξs corresponds to the (s − 1)-th column (s = 2, . . . , 5). The parameters are chosen

to mimic the dropout rate of the real data.

MNAR results. Detailed simulation results for Scenario 3 under MNAR are given in

Table A.3.

A.6 The Schizophrenia Clinical Trial Data Analysis

Details

Comparison with previous results. Table A.4 shows a comparison of data analysis re-

sults with Linero and Daniels (2015) under both the MAR and the mixture of MAR/MNAR

assumptions.
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Model E(τ̃) Bias CI width CI coverage MSE

GP -0.25 -0.055(0.007) 0.687(0.002) 0.940(0.010) 0.063(0.002)

0 -0.014(0.007) 0.690(0.002) 0.972(0.007) 0.061(0.002)

0.25 0.027(0.007) 0.693(0.002) 0.968(0.008) 0.063(0.002)

0.5 0.069(0.008) 0.699(0.002) 0.946(0.010) 0.068(0.002)

LM -0.25 -0.042(0.007) 0.725(0.002) 0.961(0.008) 0.066(0.002)

0 -0.001(0.007) 0.728(0.002) 0.980(0.006) 0.065(0.002)

0.25 0.042(0.008) 0.734(0.002) 0.972(0.007) 0.068(0.002)

0.5 0.085(0.008) 0.741(0.002) 0.948(0.010) 0.075(0.002)

LM– -0.25 -0.047(0.007) 0.751(0.002) 0.972(0.007) 0.068(0.002)

0 0.015(0.007) 0.761(0.002) 0.987(0.005) 0.068(0.002)

0.25 0.079(0.007) 0.768(0.002) 0.966(0.008) 0.075(0.002)

0.5 0.144(0.008) 0.783(0.003) 0.909(0.012) 0.092(0.003)

DPM -0.25 -0.040(0.007) 0.789(0.002) 0.982(0.006) 0.072(0.002)

0 -0.008(0.008) 0.792(0.002) 0.984(0.006) 0.071(0.002)

0.25 0.024(0.008) 0.794(0.002) 0.982(0.006) 0.072(0.002)

0.5 0.056(0.008) 0.798(0.002) 0.965(0.008) 0.075(0.002)

DPM– -0.25 -0.052(0.007) 0.703(0.002) 0.958(0.009) 0.065(0.002)

0 -0.001(0.008) 0.709(0.002) 0.967(0.008) 0.064(0.003)

0.25 0.050(0.008) 0.716(0.002) 0.947(0.010) 0.066(0.002)

0.5 0.098(0.008) 0.725(0.002) 0.914(0.013) 0.074(0.003)

Table A.3: Summary of simulation results for Scenario 3 under MNAR. Values shown

are averages over repeat sampling, with numerical Monte Carlo standard errors in paren-

theses. CI width and coverage are based on 95% credible intervals. The values of E(τ̃),

−0.25, 0, 0.25 and 0.5, correspond to prior specifications Unif(−0.75, 0.25), Unif(−0.5, 0.5),

Unif(−0.25, 0.75) and Unif(0, 1), respectively.

Sensitivity analysis. Figure A.2 shows how inferences on rT − rP and rA − rP change

for different choices of τ̃T, τ̃A and τ̃P.
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Model MDM rT − rP rA − rP
NP MAR 0.6(-5.1, 7.0) -6.1(-13.9, 1.7)

L & D (2015) MAR -1.7(-8.0, 4.8) -5.4(-12.6, 2.3)

NP MAR/MNAR 0.9(-5.3, 7.8) -6.4(-14.3, 1.8)

L & D (2015) MAR/MNAR -1.6(-8.4, 5.4) -6.2(-13.8, 2.0)

Table A.4: Comparison of inference results with Linero and Daniels (2015). NP represents

the proposed model, and L & D (2015) represents the model in Linero and Daniels (2015).

MDM refers to the missing data mechanism. Values shown are posterior means, with 95%

credible intervals in parentheses.

Figure A.2: Contour plots showing inferences on treatment effects rT−rP (left) and rA−rP
(right) for different choices of the sensitivity parameters along the [0, 1] grid. The colors

represent posterior means of rx − rP, where a deeper color indicates larger improvement

compared to placebo. The black contour lines show posterior probabilities of rx − rP < 0.

A.7 Computational Details

We report computational details for the simulation studies and the schizophrenia clinical

trial data analysis here.

Chain lengths. For all the simulation studies, we run 15,000 iterations to obtain samples

from p
(
π | {ȳisi , si,vi}Ni=1

)
(under the Gaussian process and AR/CAR priors, see Equation

11). We discard the first 5,000 draws as initial burn-in, and keep every 10th iteration. We
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run 10,000 iterations to sample from p
(
ϕ | {si,vi}Ni=1

)
, discarding the first 5,000 draws and

keeping every 5th iteration. Finally, we directly draw 1,000 samples from p
(
η | {vi}Ni=1

)
. As

a result, we have L = 1, 000 posterior draws for π, ϕ and η, i.e. {w(l)
O = (π(l),ϕ(l),η(l)), l =

1, . . . , 1000}. Next, in the G-computation, for each posterior draw, response values for

M = 1, 000 pseudo subjects are generated.

For the real data analysis, we run 50,000 iterations to sample from p
(
π | {ȳisi , si,vi}Ni=1

)
,

discarding the first 10,000 draws and keeping every 40th iteration. In the G-computation,

for each posterior draw, response values for M = 20, 000 pseudo subjects are generated.

Chain mixing and convergence diagnostic. We present some convergence diagnostics

of the Markov chains using the R package coda (Plummer et al., 2008). Without loss of

generality, we use the test drug arm of the schizophrenia clinical trial data as an example.

First, we compute the Geweke diagnostic (Geweke, 1991) for a single Markov chain,

which takes the first L1 draws and the last L2 draws of the Markov chain and makes a

difference of means test for the two parts. If the draws are from the stationary distribution,

the difference of the means should have an asymptotically standard normal distribution.

By default, we set L1 = 0.1 · L and L2 = 0.5 · L. As an example, we use the time/pattern

specific intercepts b as the test statistics. The Geweke z-score and the corresponding p-

values are reported in Table A.5. All p-values are greater than 0.05, indicating no evidence

of lack of convergence.

We also compute the Gelman-Rubin diagnostic (Gelman and Rubin, 1992) for multiple

Markov chains. We run three chains with different random seeds and compare the draws

from the three runs. We calculate the potential scale reduction factor (PSRF, or Gelman-

Rubin statistic) for the three chains. The PSRF is a weighted sum of within-chain and

between-chain variances. A PSRF close to 1 indicates the three chains are similar to each

other, i.e. convergence of the chains to the target distribution. For the multivariate b, the

multivariate PSRF (Brooks and Gelman, 1998) is 1.08. Figure A.3 shows the traceplot

of b22 for the three Markov chains. To summarize, there is no strong evidence that the

Markov chains are not converging.
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Test stat. z-score p-value PSRF PSRF upper CI

b22 -1.14 0.25 1.01 1.05

b23 -0.74 0.46 1.00 1.00

b33 1.32 0.19 1.00 1.01

b24 1.25 0.21 1.01 1.01

b34 0.26 0.79 1.02 1.07

b44 -0.57 0.57 1.01 1.01

b25 0.52 0.60 1.01 1.02

b35 -1.62 0.11 1.01 1.05

b45 -1.45 0.15 1.01 1.03

b55 -0.07 0.94 1.00 1.01

b26 0.75 0.45 1.01 1.02

b36 -0.28 0.78 1.01 1.05

b46 -1.56 0.12 1.01 1.03

b56 0.67 0.50 1.01 1.03

b66 1.23 0.22 1.01 1.02

Table A.5: Convergence diagnostics. Columns 1 to 4 show the Geweke z-scores, corre-

sponding p-values of the z-scores, potential scale reduction factors (PSRFs) and upper

confidence limits of the PSRFs for the test statistics b = (b22, . . . , b66), respectively.

Computing specifications and times. All computations in this paper are conducted

using Lonestar 5 at the Texas Advanced Computing Center (TACC). The computations

for multiple replicates of the simulated datasets are conducted in parallel using multiple

cores and multiple computing nodes. Each computing node is a Xeon E5-2690 v3 (Haswell)

with 12 cores per socket (24 cores/node), 2.6 GHz (https://portal.tacc.utexas.edu/

user-guides/lonestar5).

The average computing times for all model components and all data analysis scenarios

are summarized in Table A.6. The time to sample from p
(
π | {ȳisi , si,vi}Ni=1

)
depends on

the number of subjects and on the dropout rates. A scenario where the subjects have lower

dropout rates has more observed responses, and thus sampling from p
(
π | {ȳisi , si,vi}Ni=1

)
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Figure A.3: Traceplot of b22 for the three Markov chains in three different colors.

takes longer. Therefore, although simulation scenarios 1, 2 and 3 have the same number

of subjects, their times for sampling from p
(
π | {ȳisi , si,vi}Ni=1

)
are different. Table A.6

shows the time for G-computation under MAR. Under MNAR, the time needed for G-

computation increases by 1.5 to 2 fold depending on the dropout rates.
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N J Time for GP Time for BART Time for G-comp.

Simu. 1 200 6 8500 160 9500

Simu. 2 200 6 6000 160 9500

Simu. 3 200 6 7000 160 9500

Test 81 6 4400 60 5500

Active 45 6 1700 40 2800

Placebo 78 6 4000 60 4900

Table A.6: Average computing time (in seconds) for each model component and each

data analysis scenario. The values N and J represent the number of subjects and num-

ber of time points for the corresponding scenario, respectively. Time for GP, time for

BART and time for G-comp. are in short for the times for drawing Lπ samples from

p
(
π | {ȳisi , si,vi}Ni=1

)
, drawing Lϕ samples from p

(
ϕ | {si,vi}Ni=1

)
and generating M pseu-

do subjects for L posterior draws under MAR, respectively. For the simulation scenarios,

Lπ = 15, 000, Lϕ = 10, 000, M = 1, 000 and L = 1, 000. For the real data analysis,

Lπ = 50, 000, Lϕ = 10, 000, M = 20, 000 and L = 1, 000, where the M = 20, 000 pseudo

subjects are drawn using 20 parallel threads (each thread generates 1,000).
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